BIH Paper of the Month

Mit dem BIH Paper of the Month würdigt der Vorstand des BIH monatlich eine besondere Publikationsleistung aus dem gemeinsamen Forschungsraum von Charité und MDC. Das Paper of the Month wird von der Stiftung Charité im Rahmen ihrer Privaten Exzellenzinitiative Johanna Quandt gefördert. Der Preis wird zu Beginn jedes Monats für eine Publikation vergeben, die im vorletzten Monat veröffentlicht wurde (so wird im März eine Publikation aus dem Monat Januar prämiert). Als Datum der Veröffentlichung gilt die öffentliche Verfügbarkeit (online und/oder Druck) des Artikels, nicht jedoch eine “advanced publication“ von zur Veröffentlichung angenommenen Autorenmanuskripten. Das Preisgeld von 500 Euro erhält die Gruppenleiterin oder der Gruppenleiter, für die die Autorin oder der Autor mit BIH-Affiliation arbeitet.

Berücksichtigt werden Publikationen, die bei einer PubMed-Suche nach Veröffentlichungen mit direkter BIH-Affiliation (alleinige Affiliation über die Gliedkörperschaften reicht nicht aus) im entsprechenden Monat gefunden werden.

Zusätzlich können dem BIH per E-Mail jederzeit Publikationen vorgeschlagen werden.

Kriterien für die Preisvergabe

  • Nennung der BIH-Affiliation

  • Passfähigkeit zur BIH-Strategie
    - Beitrag zu Erforschung/Diagnose/Therapie progredienter Krankheiten
    - Transfer zwischen Grundlagen- und klinischer Forschung
    - Transfer zwischen Forschung und kommerzieller Anwendung
    - Nutzung von BIH-Infrastrukturen
  • Originalität der Arbeit

  • Maßnahmen zur Qualitätssicherung bei der Erarbeitung und Veröffentlichung des Papers (z. B. Open-Access / Open-Data-Publikation, Verwendung von elektronischen Laborbüchern, transparente Dokumentation von Studienplanung und -durchführung, Publikation von negativen oder neutralen Ergebnissen, Replikationsstudien etc.)

  • Beteiligung von
    - Nachwuchswissenschaftlern
    - unterschiedlichen Forschungsdisziplinen
    - Internationalen Autoren

  • Gender Balance

MAI 2020 – Das Mikrobiom und die Fitness des Immunsystems

Im Mai 2020 erhielt Laura Schaupp die Auszeichnung Paper of the Month.

Zur Pressemitteilung

Schaupp L et al.: Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 2020 Mai 06. doi:


Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.

APRIL 2020 – Neue Software spürt krankmachende Genveränderungen auf

Im April 2020 erhielt Dr. Dieter Beule die Auszeichnung Paper of the Month.

Zur Pressemitteilung

Manuel Holtgreweet et al.: VarFish: comprehensive DNA variant analysis for diagnostics and research, Nucleic Acids Research,


VarFish is a user-friendly web application for the quality control, filtering, prioritization, analysis, and user-based annotation of DNA variant data with a focus on rare disease genetics. It is capable of processing variant call files with single or multiple samples. The variants are automatically annotated with population frequencies, molecular impact, and presence in databases such as ClinVar. Further, it provides support for pathogenicity scores including CADD, MutationTaster, and phenotypic similarity scores. Users can filter variants based on these annotations and presumed inheritance pattern and sort the results by these scores. Variants passing the filter are listed with their annotations and many useful link-outs to genome browsers, other gene/variant data portals, and external tools for variant assessment. VarFish allows users to create their own annotations including support for variant assessment following ACMG-AMP guidelines. In close collaboration with medical practitioners, VarFish was designed for variant analysis and prioritization in diagnostic and research settings as described in the software's extensive manual. The user interface has been optimized for supporting these protocols. Users can install VarFish on their own in-house servers where it provides additional lab notebook features for collaborative analysis and allows re-analysis of cases, e.g. after update of genotype or phenotype databases.

MÄRZ 2020 – Induzierte pluripotente Stammzellen und die extrazelluläre Matrix: Neue Möglichkeiten für die Organspende?

Im März 2020 erhielt Andreas Kurtz die Auszeichnung Paper of the Month.

Zum Interview

Imran Ullah, Jonas Felix Busch, Anja Rabien, Bettina Ergün, Christof Stamm, Christoph Knosalla, Stefan Hippenstiel, Petra Reinke, Andreas Kurtz: Adult Tissue Extracellular Matrix Determines Tissue Specification of Human iPSC-Derived Embryonic Stage Mesodermal Precursor Cells. Advanced Science 2020, 7.


The selection of pluripotent stem cell (PSC)‐derived cells for tissue modeling and cell therapy will be influenced by their response to the tissue environment, including the extracellular matrix (ECM). Whether and how instructive memory is imprinted in adult ECM and able to impact on the tissue specific determination of human PSC‐derived developmentally fetal mesodermal precursor (P‐meso) cells is investigated. Decellularized ECM (dECM) is generated from human heart, kidney, and lung tissues and recellularized with P‐meso cells in a medium not containing any differentiation inducing components. While P‐meso cells on kidney dECM differentiate exclusively into nephronal cells, only beating clusters containing mature and immature cardiac cells form on heart dECM. No tissue‐specific differentiation of P‐meso cells is observed on endoderm‐derived lung dECM. P‐meso‐derived endothelial cells, however, are found on all dECM preparations independent of tissue origin. Clearance of heparan‐sulfate proteoglycans (HSPG) from dECM abolishes induction of tissue‐specific differentiation. It is concluded that HSPG‐bound factors on adult tissue‐derived ECM are essential and sufficient to induce tissue‐specific specification of uncommitted fetal stage precursor cells.

FEBRUAR 2020 – Eine gezielte Therapie gegen das Nierenkarzinom über WNT und NOTCH?

Im Februar 2020 erhielten Annika Fendler und Daniel Bauer die Auszeichnung Paper of the Month.

Zum Interview

Fendler A, Bauer D, Busch J, et al. Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat Commun. 2020;11(1):929. Published 2020 Feb 17. doi:10.1038/s41467-020-14700-7


Current treatments for clear cell renal cell cancer (ccRCC) are insufficient because two-thirds of patients with metastases progress within two years. Here we report the identification and characterization of a cancer stem cell (CSC) population in ccRCC. CSCs are quantitatively correlated with tumor aggressiveness and metastasis. Transcriptional profiling and single cell sequencing reveal that these CSCs exhibit an activation of WNT and NOTCH signaling. A significant obstacle to the development of rational treatments has been the discrepancy between model systems and the in vivo situation of patients. To address this, we use CSCs to establish non-adherent sphere cultures, 3D tumor organoids, and xenografts. Treatment with WNT and NOTCH inhibitors blocks the proliferation and self-renewal of CSCs in sphere cultures and organoids, and impairs tumor growth in patient-derived xenografts in mice. These findings suggest that our approach is a promising route towards the development of personalized treatments for individual patients.

JANUAR 2020 – Helfen Statine bei Präeklampsie?

Im Januar 2020 erhielten Nadine Haase und Kristin Kräker die Auszeichnung Paper of the Month.

Zum Interview

Kräker K, O'Driscoll JM, Schütte T, et al. Statins Reverse Postpartum Cardiovascular Dysfunction in a Rat Model of Preeclampsia. Hypertension. 2020;75(1):202-210 doi: 10.1161/HYPERTENSIONAHA.119.13219


Preeclampsia is associated with increased cardiovascular long-term risk; however, the underlying functional and structural mechanisms are unknown. We investigated maternal cardiac alterations after preeclampsia. Female ratsharboring the human angiotensinogen gene [TGR(hAogen)L1623] develop a preeclamptic phenotype with hypertension and albuminuria during pregnancy when mated with male rats bearing the human renin gene [TGR(hRen)L10J] but behave physiologically normal before and after pregnancy. Furthermore, rats were treated with pravastatin. We tested the hypothesis that statins are a potential therapeutic intervention to reduce cardiovascular alterations due to simulated preeclamptic pregnancy. Although hypertension persists for only 8 days in pregnancy, former preeclampsia rats exhibit significant cardiac hypertrophy 28 days after pregnancy observed in both speckle tracking echocardiography and histological staining. In addition, fibrosis and capillary rarefaction was evident. Pravastatin treatment ameliorated the remodeling and improved cardiac output postpartum. Preeclamptic pregnancy induces irreversible structural changes of cardiac hypertrophy and fibrosis, which can be moderated by pravastatin treatment. This pathological cardiac remodeling might be involved in increased cardiovascular risk in later life. (Hypertension. 2020;75:202-210. DOI: 10.1161/HYPERTENSIONAHA.119.13219.) Online Data Supplement

DEZEMBER 2019 – Ein Katalog zirkulärer DNA beim Neuroblastom

Im Dezember erhielt Anton Henssen die Auszeichnung Paper of the Month.

Koche, R.P., Rodriguez-Fos, E., Helmsauer, K. et al., Henssen, A. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat Genet 52, 29–34 (2020).


Extrachromosomal circularization of DNA is an important genomic feature in cancer. However, the structure, composition and genome-wide frequency of extrachromosomal circular DNA have not yet been profiled extensively. Here, we combine genomic and transcriptomic approaches to describe the landscape of extrachromosomal circular DNA in neuroblastoma, a tumor arising in childhood from primitive cells of the sympathetic nervous system. Our analysis identifies and characterizes a wide catalog of somatically acquired and undescribed extrachromosomal circular DNAs. Moreover, we find that extrachromosomal circular DNAs are an unanticipated major source of somatic rearrangements, contributing to oncogenic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. Cancer-causing lesions can emerge out of circle-derived rearrangements and are associated with adverse clinical outcome. It is highly probable that circle-derived rearrangements represent an ongoing mutagenic process. Thus, extrachromosomal circular DNAs represent a multihit mutagenic process, with important functional and clinical implications for the origins of genomic remodeling in cancer.

NOVEMBER 2019 – Mindestens ein Drittel aller Tierversuche bleiben ohne Paper

Im November erhielt Daniel Strech die Auszeichnung Paper of the Month.

Wieschowski S, Biernot S, Deutsch S, Glage S, Bleich A, Tolba R, Strech D (2019) Publication rates in animal research. Extent and characteristics of published and non-published animal studies followed up at two German university medical centres. PLoS ONE 14(11): e0223758. https://doi. org/10.1371/journal.pone.0223758


Non-publication and publication bias in animal research is a core topic in current debates on the “reproducibility crisis” and “failure rates in clinical research”. To date, however, we lack reliable evidence on the extent of non-publication in animal research. We collected a random and stratified sample (n = 210) from all archived animal study protocols of two major German UMCs (university medical centres) and tracked their results publication. The overall publication rate was 67%. Excluding doctoral theses as results publications, the publication rate decreased to 58%. We did not find substantial differences in publication rates with regard to i) the year of animal study approval, ii) the two UMCs, iii) the animal type (rodents vs. non-rodents), iv) the scope of research (basic vs. preclinical), or v) the discipline of the applicant. Via the most reliable assessment strategy currently available, our study confirms that the non-publication of results from animal studies conducted at UMCs is relatively common. The non-publication of 33% of all animal studies is problematic for the following reasons: A) the primary legitimation of animal research, which is the intended knowledge gain for the wider scientific community, B) the waste of public resources, C) the unnecessary repetition of animal studies, and D) incomplete and potentially biased preclinical evidence for decision making on launching early human trials. Results dissemination should become a professional standard for animal research. Academic institutions and research funders should develop effective policies in this regard.

OKTOBER 2019 – Neue Therapie für Mucoviszidose-Patienten

Im Oktober erhielt Marcus Mall die Auszeichnung Paper of the Month.
Zum Interview

Middleon PG, Mall MA, Dřevínek LC, et al. Elexacaftor–tezacaftor–ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med. 2019;381:1809–19. doi: 10.1056/NEJMoa1908639



Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and nearly 90% of patients have at least one copy of the Phe508del CFTR mutation. In a phase 2 trial involving patients who were heterozygous for the Phe508del CFTR mutation and a minimal-function mutation (Phe508del–minimal function genotype), the next-generation CFTR corrector elexacaftor, in combination with tezacaftor and ivacaftor, improved Phe508del CFTR function and clinical outcomes.


We conducted a phase 3, randomized, double-blind, placebo-controlled trial to confirm the efficacy and safety of elexacaftor–tezacaftor–ivacaftor in patients 12 years of age or older with cystic fibrosis with Phe508del–minimal function genotypes. Patients were randomly assigned to receive elexacaftor–tezacaftor–ivacaftor or placebo for 24 weeks. The primary end point was absolute change from baseline in percentage of predicted forced expiratory volume in 1 second (FEV1) at week 4.


A total of 403 patients underwent randomization and received at least one dose of active treatment or placebo. Elexacaftor–tezacaftor–ivacaftor, relative to placebo, resulted in a percentage of predicted FEV1that was 13.8 points higher at 4 weeks and 14.3 points higher through 24 weeks, a rate of pulmonary exacerbations that was 63% lower, a respiratory domain score on the Cystic Fibrosis Questionnaire–Revised (range, 0 to 100, with higher scores indicating a higher patient-reported quality of life with regard to respiratory symptoms; minimum clinically important difference, 4 points) that was 20.2 points higher, and a sweat chloride concentration that was 41.8 mmol per liter lower (P<0.001 for all comparisons). Elexacaftor–tezacaftor–ivacaftor was generally safe and had an acceptable side-effect profile. Most patients had adverse events that were mild or moderate. Adverse events leading to discontinuation of the trial regimen occurred in 1% of the patients in the elexacaftor–tezacaftor–ivacaftor group.


Elexacaftor–tezacaftor–ivacaftor was efficacious in patients with cystic fibrosis with Phe508del–minimal function genotypes, in whom previous CFTR modulator regimens were ineffective. (Funded by Vertex Pharmaceuticals; VX17-445-102 number, NCT03525444. opens in new tab.)

SEPTEMBER 2019 – Bekämpfen CAR-T-Zellen Tumore auf der Netzhaut im Auge?

Im September erhielt Annette Künkele die Auszeichnung Paper of the Month.

Zum Interview

Andersch, Lena & Radke, Josefine & Klaus, Anika & Schwiebert, Silke & Winkler, Annika & Schumann, Elisa & Grunewald, Laura & Zirngibl, Felix & Flemmig, Carina & Jensen, Michael & Rossig, Claudia & Joussen, Antonia & Henssen, Anton & Eggert, Angelika & Schulte, Johannes & Künkele, Annette. (2019). CD171- and GD2-specific CAR-T cells potently target retinoblastoma cells in preclinical in vitro testing. BMC Cancer. 19. doi: 10.1186/s12885-019-6131-1.



Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects.


CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs.


All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing.


Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.

Supplementary information

Supplementary information accompanies this paper at 10.1186/s12885-019-6131-1.

Keywords: Adoptive T-cell immunotherapy, Retinoblastoma, CD171, GD2, Antigen loss, Sequential CAR-T cell therapy

AUGUST 2019 – Aus mikroskopischen Bildern auf genetische Veränderungen schließen

Im August erhielt Christian Conrad die Auszeichnung Paper of the Month.

Tirier, S.M., Park, J., Preußer, F., ..., Conrad, C.: Pheno-seq – linking visual features and gene expression in 3D cell culture systems. Sci Rep 9, 12367 (2019) doi:10.1038/s41598-019-48771-4


Patient-derived 3D cell culture systems are currently advancing cancer research since they potentiate the molecular analysis of tissue-like properties and drug response under well-defined conditions. However, our understanding of the relationship between the heterogeneity of morphological phenotypes and the underlying transcriptome is still limited. To address this issue, we here introduce “pheno-seq” to directly link visual features of 3D cell culture systems with profiling their transcriptome. As prototypic applications breast and colorectal cancer (CRC) spheroids were analyzed by pheno-seq. We identified characteristic gene expression signatures of epithelial-to-mesenchymal transition that are associated with invasive growth behavior of clonal breast cancer spheroids. Furthermore, we linked long-term proliferative capacity in a patient-derived model of CRC to a lowly abundant PROX1-positive cancer stem cell subtype. We anticipate that the ability to integrate transcriptome analysis and morphological patho-phenotypes of cancer cells will provide novel insight on the molecular origins of intratumor heterogeneity.

JULI 2019 – Ein Krebsmedikament für Herzpatienten

Im Juli erhielt Sebastian Diecke die Auszeichnung Paper of the Month.
Zum Interview.

Lee, J., Termglinchan, V., Diecke, S. et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature 572, 335–340 (2019) doi:10.1038/s41586-019-1406-x


Lamin A/C (LMNA) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in LMNA is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-β (PDGFRB) as a potential therapeutic target.

JUNI 2019 – Wie sich Magenzellen vor einer Helicobacterinfektion schützen

Im Juni erhielt Michael Sigal die Auszeichnung Paper of the Month.

Sigal, M., Reinés, M.d.M., Müllerke, S. et al. R-spondin-3 induces secretory, antimicrobial Lgr5+ cells in the stomach. Nat Cell Biol 21, 812–823 (2019) doi:10.1038/s41556-019-0339-9


Wnt signalling stimulated by binding of R-spondin (Rspo) to Lgr-family members is crucial for gastrointestinal stem cell renewal. Infection of the stomach with Helicobacter pylori stimulates increased secretion of Rspo by myofibroblasts, leading to an increase in proliferation of Wnt-responsive Axin2+Lgr5− stem cells in the isthmus of the gastric gland and finally gastric gland hyperplasia. Basal Lgr5+ cells are also exposed to Rspo3, but their response remains unclear. Here, we demonstrate that—in contrast to its known mitogenic activity—Rspo3 induces differentiation of basal Lgr5+ cells into secretory cells that express and secrete antimicrobial factors, such as intelectin-1, into the lumen. The depletion of Lgr5+ cells or the knockout of Rspo3 in myofibroblasts leads to hypercolonization of the gastric glands with H. pylori, including the stem cell compartment. By contrast, systemic administration or overexpression of Rspo3 in the stroma clears H. pylori from the gastric glands. Thus, the Rspo3–Lgr5 axis simultaneously regulates both antimicrobial defence and mucosal regeneration.

MAI 2019 – Alle Eiweiße des menschlichen Herzens

Im Mai erhielten Norbert Hübner, Sebastiaan van Heesch und ihr Team die Auszeichnung Paper of the Month.
Zum Interview

van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, Adami E, Faber AB, Kirchner M, Maatz H, Blachut S, Sandmann CL, Kanda M, Worth CL, Schafer S, Calviello L, Merriott R, Patone G, Hummel O, Wyler E7, … , Hubner N. The Translational Landscape of the Human Heart. Cell. 2019 Jun 27;178(1):242-260.e29. doi: 10.1016/j.cell.2019.05.010


Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.

Keywords: ORF detection; circRNAs; dilated cardiomyopathy; heart failure; human heart; lncRNAs; microproteins; protein-truncating variants; ribosome profiling; short ORFs; titin; translational regulation; translatome

APRIL 2019 – Wie man dem Muskelverlust auf der Intensivstation entgegenwirken kann

Im April erhielten Tobias Wollersheim, Steffen Weber-Carstens und ihr Team die Auszeichnung Paper of the Month.
Zum Interview

Wollersheim T, Grunow JJ, Carbon NM, Haas K, Malleike J, Ramme SF, Schneider J, Spies CD, Märdian S, Mai K, Spuler S, Fielitz J, Weber-Carstens S. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: an explorative trial. J Cachexia Sarcopenia Muscle. 2019 Apr 23. doi: 10.1002/jcsm.12428.


Background: Early mobilization improves physical independency of critically ill patients at hospital discharge in a general intensive care unit (ICU)-cohort. We aimed to investigate clinical and molecular benefits or detriments of early mobilization and muscle activating measures in a high-risk ICU-acquired weakness cohort.

Methods: Fifty patients with a SOFA score ≥9 within 72 h after ICU admission were randomized to muscle activating measures such as neuromuscular electrical stimulation or whole-body vibration in addition to early protocol-based physiotherapy (intervention) or early protocol-based physiotherapy alone (control). Muscle strength and function were assessed by Medical Research Council (MRC) score, handgrip strength and Functional Independence Measure at first awakening, ICU discharge, and 12 month follow-up. Patients underwent open surgical muscle biopsy on day 15. We investigated the impact of muscle activating measures in addition to early protocol-based physiotherapy on muscle strength and function as well as on muscle wasting, morphology, and homeostasis in patients with sepsis and ICU-acquired weakness. We compared the data with patients treated with common physiotherapeutic practice (CPP) earlier.

Results: ICU-acquired weakness occurs within the entire cohort, and muscle activating measures did not improve muscle strength or function at first awakening (MRC median [IQR]: CPP 3.3 [3.0-4.3]; control 3.0 [2.7-3.4]; intervention 3.0 [2.1-3.8]; P > 0.05 for all), ICU discharge (MRC median [IQR]: CPP 3.8 [3.4-4.4]; control 3.9 [3.3-4.0]; intervention 3.6 [2.8-4.0]; P > 0.05 for all), and 12 month follow-up (MRC median [IQR]: control 5.0 [4.3-5.0]; intervention 4.8 [4.3-5.0]; P = 0.342 for all). No signs of necrosis or inflammatory infiltration were present in the histological analysis. Myocyte cross-sectional area in the intervention group was significantly larger in comparison with the control group (type I +10%; type IIa +13%; type IIb +3%; P < 0.001 for all) and CPP (type I +36%; type IIa +49%; type IIb +65%; P < 0.001 for all). This increase was accompanied by an up-regulated gene expression for myosin heavy chains (fold change median [IQR]: MYH1 2.3 [1.1-2.7]; MYH2 0.7 [0.2-1.8]; MYH4 5.1 [2.2-15.3]) and an unaffected gene expression for TRIM63, TRIM62, and FBXO32.

Conclusions: In our patients with sepsis syndrome at high risk for ICU-acquired weakness muscle activating measures in addition to early protocol-based physiotherapy did not improve muscle strength or function at first awakening, ICU discharge, or 12 month follow-up. Yet it prevented muscle atrophy.

MÄRZ 2019 – Hirnstimulation gegen Bauchschmerzen

Im März erhielten Magdalena Sarah Volz und ihr Team die Auszeichnung Paper of the Month.
Zum Interview

Neeb L, Bayer A, Bayer KE, Farmer A, Fiebach JB, Siegmund B, Volz MS. Transcranial direct current stimulation in inflammatory bowel disease patients modifies resting-state functional connectivity: A RCT. Brain Stimul. 2019 Mar 5. pii: S1935-861X(19)30080-4. doi: 10.1016/j.brs.2019.03.001.


Background: Chronic pain is known to be associated with functional and structural changes in the brain. Inflammatory bowel disease (IBD) presents with chronic abdominal pain in almost 35% of all patients. This study investigates structural and functional changes in magnetic resonance imaging (MRI) after transcranial direct current stimulation (tDCS) applied to ameliorate pain in IBD.

Methods: This phase-III, placebo-controlled, randomized study included 36 patients with IBD and chronic pain. MRI scans were performed before and following tDCS, which was applied for 5 days.

Results/Conclusion: For the first time, this study revealed an association of changes in resting-state functional MRI and pain reduction in IBD. There was a significant increase in functional connectivity after active tDCS within the visual medial and the right frontoparietal network being connected with the amygdala, the insula, and the primary somatosensory cortex indicating central pain mechanisms in IBD. Moreover, tDCS offers a novel therapeutic strategy for abdominal pain.

FEBRUAR 2019 – Ein Eiweiß, das vor den Folgen des Schlaganfalls schützt

Im Februar erhielten Magdalena Jochner, Christoph Harms und ihr Team die Auszeichnung Paper of the Month.
Zum Interview

Jochner MCE, An J, Lättig-Tünnemann G, Kirchner M, Dagane A, Dittmar G, Dirnagl U, Eickholt BJ, Harms C. Unique properties of PTEN-L contribute to neuroprotection in response to ischemic-like stress. Sci Rep. doi: 10.1038/s41598-019-39438-1


Phosphatase and tensin homolog (PTEN) signalling might influence neuronal survival after brain ischemia. However, the influence of the less studied longer variant termed PTEN-L (or PTENα) has not been studied to date. Therefore, we examined the translational variant PTEN-L in the context of neuronal survival. We identified PTEN-L by proteomics in murine neuronal cultures and brain lysates and established a novel model to analyse PTEN or PTEN-L variants independently in vitro while avoiding overexpression. We found that PTEN-L, unlike PTEN, localises predominantly in the cytosol and translocates to the nucleus 10-20 minutes after glutamate stress. Genomic ablation of PTEN and PTEN-L increased neuronal susceptibility to oxygen-glucose deprivation. This effect was rescued by expression of either PTEN-L indicating that both PTEN isoforms might contribute to a neuroprotective response. However, in direct comparison, PTEN-L replaced neurons were protected against ischemic-like stress compared to neurons expressing PTEN. Neurons expressing strictly nuclear PTEN-L NLS showed increased vulnerability, indicating that nuclear PTEN-L alone is not sufficient in protecting against stress. We identified mutually exclusive binding partners of PTEN-L or PTEN in cytosolic or nuclear fractions, which were regulated after ischemic-like stress. GRB2-associated-binding protein 2, which is known to interact with phosphoinositol-3-kinase, was enriched specifically with PTEN-L in the cytosol in proximity to the plasma membrane and their interaction was lost after glutamate exposure. The present study revealed that PTEN and PTEN-L have distinct functions in response to stress and might be involved in different mechanisms of neuroprotection.

JANUAR 2019 – Wie das Immunsystem vor Darmkrebs schützt

Andreas Diefenbach und sein Team erhielten die Auszeichnung Paper of the Month für den Januar 2019.
Pressemitteilung: Wie das Immunsystem vor Darmkrebs schützt
BIH Podcast Folge 5 mit Andreas Diefenbach

Gronke K, Hernández PP, Zimmermann J, Klose CSN, Kofoed-Branzk M, Guendel F, Witkowski M, Tizian C, Amann L, Schumacher F, Glatt H, Triantafyllopoulou A, Diefenbach A. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature. 2019 Feb;566(7743):249-253. doi: 10.1038/s41586-019-0899-7. Epub 2019 Jan 30.


Environmental genotoxic factors pose a challenge to the genomic integrity of epithelial cells at barrier surfaces that separate host organisms from the environment. They can induce mutations that, if they occur in epithelial stem cells, contribute to malignant transformation and cancer development. Genome integrity in epithelial stem cells is maintained by an evolutionarily conserved cellular response pathway, the DNA damage response (DDR). The DDR culminates in either transient cell-cycle arrest and DNA repair or elimination of damaged cells by apoptosis. Here we show that the cytokine interleukin-22 (IL-22), produced by group 3 innate lymphoid cells (ILC3) and γδ T cells, is an important regulator of the DDR machinery in intestinal epithelial stem cells. Using a new mouse model that enables sporadic inactivation of the IL-22 receptor in colon epithelial stem cells, we demonstrate that IL-22 is required for effective initiation of the DDR following DNA damage. Stem cells deprived of IL-22 signals and exposed to carcinogens escaped DDR-controlled apoptosis, contained more mutations and were more likely to give rise to colon cancer. We identified metabolites of glucosinolates, a group of phytochemicals contained in cruciferous vegetables, to be a widespread source of genotoxic stress in intestinal epithelial cells. These metabolites are ligands of the aryl hydrocarbon receptor (AhR), and AhR-mediated signalling in ILC3 and γδ T cells controlled their production of IL-22. Mice fed with diets depleted of glucosinolates produced only very low levels of IL-22 and, consequently, the DDR in epithelial cells of mice on a glucosinolate-free diet was impaired. This work identifies a homeostatic network protecting stem cells against challenge to their genome integrity by AhR-mediated 'sensing' of genotoxic compounds from the diet. AhR signalling, in turn, ensures on-demand production of IL-22 by innate lymphocytes directly regulating components of the DDR in epithelial stem cells.

DEZEMBER 2018 – Propionsäure verhindert Schäden durch Bluthochdruck

Im Dezember erhielten Nicola Wilck und sein Team die Auszeichnung Paper of the Month. Zum Interview

Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S, Tsvetkov D, Krannich A, Wundersitz S, Avery EG, Haase N, Kräker K, Hering L, Maase M, Kusche-Vihrog K, Grandoch M, Fielitz J, Kempa S, Gollasch M, Zhumadilov Z, Kozhakhmetov S, Kushugulova A, Eckardt KU, Dechend R, Rump LC, Forslund SK, Müller DN, Stegbauer J, Wilck N. The Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage. Circulation. 2018 Dec 4. doi: 10.1161/CIRCULATIONAHA.118.036652.


Background: Arterial hypertension and its organ sequelae show characteristics of T cell mediated inflammatory diseases. Experimental anti-inflammatory therapies have been shown to ameliorate hypertensive end-organ damage. Recently, the CANTOS study targeting interleukin-1β demonstrated that anti-inflammatory therapy reduces cardiovascular risk. The gut microbiome plays pivotal role in immune homeostasis and cardiovascular health. Short-chain fatty acids (SCFA) are produced from dietary fiber by gut bacteria and affect host immune homeostasis. Here, we investigated effects of the SCFA propionate in two different mouse models of hypertensive cardiovascular damage.

Methods: To investigate the effect of SCFA on hypertensive cardiac damage and atherosclerosis, wild-type NMRI (WT) or ApoE-/- deficient mice received propionate (200mM) or control in the drinking water. To induce hypertension, WT mice were infused with Angiotensin (Ang)II (1.44mg/kg/d s.c.) for 14 days. To accelerate the development of atherosclerosis, ApoE-/- mice were infused with AngII (0.72mg/kg/d s.c.) for 28 days. Cardiac damage and atherosclerosis were assessed using histology, echocardiography, in vivo electrophysiology, immunofluorescence, and flow cytometry. Blood pressure was measured by radiotelemetry. Regulatory T cell (Treg) depletion using PC61 antibody was used to examine the mode of action of propionate.

Results: Propionate significantly attenuated cardiac hypertrophy, fibrosis, vascular dysfunction, and hypertension in both models. Susceptibility to cardiac ventricular arrhythmias was significantly reduced in propionate-treated AngII-infused WT mice. Aortic atherosclerotic lesion area was significantly decreased in propionate-treated ApoE-/-. Systemic inflammation was mitigated by propionate treatment, quantified as a reduction in splenic effector memory T cell frequencies and splenic T helper 17 cells in both models, and a decrease in local cardiac immune cell infiltration in WT mice. Cardioprotective effects of propionate were abrogated in Treg-depleted AngII-infused mice, suggesting the effect is Treg-dependent.

Conclusions: Our data emphasize an immune-modulatory role of SCFAs and their importance for cardiovascular health. The data suggest that lifestyle modifications leading to augmented SCFA production could be a beneficial non-pharmacological preventive strategy for patients with hypertensive cardiovascular disease.

NOVEMBER 2018 – An Integrated Understanding of the Molecular Mechanisms How Adipose Tissue Metabolism Affects Long-Term Body Weight Maintenance

Im November erhielten Knut Mai, Standort-Leiter der BIH Clinical Research Unit (CRU), und sein Team das Paper of the Month. Zum Interview

Mai K, Li L, Wiegand S, Brachs M, Leupelt V, Ernert A, Kühnen P, Hübner N, Robinson P, Chen W, Krude H, Spranger J. An Integrated Understanding of the Molecular Mechanisms How Adipose Tissue Metabolism Affects Long-Term Body Weight Maintenance. Diabetes. 2019 Jan;68(1):57-65. doi: 10.2337/db18-0440. Epub 2018 Nov 2.


Lifestyle-based weight loss interventions frequently demonstrate long-term inefficiency and weight regain. Identification of underlying mechanisms and predictors to identify subjects who will benefit from lifestyle-based weight loss strategies is urgently required. We analyzed 143 adults of the randomized Maintain trial (Maintain-Adults) after intended weight loss to identify mechanisms contributing to the regulation of body weight maintenance. Unbiased RNA sequencing of adipose and skeletal muscle biopsies revealed fatty acid metabolism as a key pathway modified by weight loss. Variability of key enzymes of this pathway, estimates of substrate oxidation, and specific serum acylcarnitine (AC) species, representing a systemic snapshot of in vivo substrate flux, predicted body weight maintenance (defined as continuous or dichotomized [< or ≥3% weight regain] variable) 18 months after intended weight loss in the entire cohort. Key results were confirmed in a similar randomized controlled trial in 137 children and adolescents (Maintain-Children), which investigated the same paradigm in a pediatric cohort. These data suggest that adaption of lipid utilization in response to negative energy balance contributes to subsequent weight maintenance. Particularly a functional role for circulating ACs, which have been suggested to reflect intracellular substrate utilization, as mediators between peripheral energy stores and control of long-term energy homeostasis was indicated.

OKTOBER 2018 – High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population

Im Oktober erhielten Dimitrios L. Wagner und sein Team die Auszeichnung Paper of the Month. Zum Interview

Wagner DL, Amini L, Wendering DJ, Burkhardt LM, Akyüz L, Reinke P, Volk HD, Schmueck-Henneresse M. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med. 2018 Oct 29. doi: 10.1038/s41591-018-0204-6


The discovery of the highly efficient site-specific nuclease system CRISPR-Cas9 from Streptococcus pyogenes has galvanized the field of gene therapy. The immunogenicity of Cas9 nuclease has been demonstrated in mice. Preexisting immunity against therapeutic gene vectors or their cargo can decrease the efficacy of a potentially curative treatment and may pose significant safety issues. S. pyogenes is a common cause for infectious diseases in humans, but it remains unclear whether it induces a T cell memory against the Cas9 nuclease. Here, we show the presence of a preexisting ubiquitous effector T cell response directed toward the most widely used Cas9 homolog from S. pyogenes (SpCas9) within healthy humans. We characterize SpCas9-reactive T cells within the CD4/CD8 compartments for multi-effector potency, cytotoxicity, and lineage determination. In-depth analysis of SpCas9-reactive T cells reveals a high frequency of SpCas9-reactive regulatory T cells that can mitigate SpCas9-reactive effector T cell proliferation and function in vitro. Our results shed light on T cell-mediated immunity toward CRISPR-associated nucleases and offer a possible solution to overcome the problem of preexisting immunity.

SEPTEMBER 2018 – Machine learning for real-time prediction of complications in critical care: a retrospective study

Im September erhielten Alexander Meyer und sein Team die Auszeichnung Paper of the Month.

Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann SH, Stamm C, Hofmann T, Falk V, Eickhoff C. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med. 2018 Sep 28. pii: S2213-2600(18)30300-X. doi: 10.1016/S2213-2600(18)30300-X.


The large amount of clinical signals in intensive care units can easily overwhelm health-care personnel and can lead to treatment delays, suboptimal care, or clinical errors. The aim of this study was to apply deep machine learning methods to predict severe complications during critical care in real time after cardiothoracic surgery.

We used deep learning methods (recurrent neural networks) to predict several severe complications (mortality, renal failure with a need for renal replacement therapy, and postoperative bleeding leading to operative revision) in post cardiosurgical care in real time. Adult patients who underwent major open heart surgery from Jan 1, 2000, to Dec 31, 2016, in a German tertiary care centre for cardiovascular diseases formed the main derivation dataset. We measured the accuracy and timeliness of the deep learning model's forecasts and compared predictive quality to that of established standard-of-care clinical reference tools (clinical rule for postoperative bleeding, Simplified Acute Physiology Score II for mortality, and the Kidney Disease: Improving Global Outcomes staging criteria for acute renal failure) using positive predictive value (PPV), negative predictive value, sensitivity, specificity, area under the curve (AUC), and the F1 measure (which computes a harmonic mean of sensitivity and PPV). Results were externally retrospectively validated with 5898 cases from the published MIMIC-III dataset.

Of 47 559 intensive care admissions (corresponding to 42 007 patients), we included 11 492 (corresponding to 9269 patients). The deep learning models yielded accurate predictions with the following PPV and sensitivity scores: PPV 0·90 and sensitivity 0·85 for mortality, 0·87 and 0·94 for renal failure, and 0·84 and 0·74 for bleeding. The predictions significantly outperformed the standard clinical reference tools, improving the absolute complication prediction AUC by 0·29 (95% CI 0·23-0·35) for bleeding, by 0·24 (0·19-0·29) for mortality, and by 0·24 (0·13-0·35) for renal failure (p<0·0001 for all three analyses). The deep learning methods showed accurate predictions immediately after patient admission to the intensive care unit. We also observed an increase in performance in our validation cohort when the machine learning approach was tested against clinical reference tools, with absolute improvements in AUC of 0·09 (95% CI 0·03-0·15; p=0·0026) for bleeding, of 0·18 (0·07-0·29; p=0·0013) for mortality, and of 0·25 (0·18-0·32; p<0·0001) for renal failure.

The observed improvements in prediction for all three investigated clinical outcomes have the potential to improve critical care. These findings are noteworthy in that they use routinely collected clinical data exclusively, without the need for any manual processing. The deep machine learning method showed AUC scores that significantly surpass those of clinical reference tools, especially soon after admission. Taken together, these properties are encouraging for prospective deployment in critical care settings to direct the staff's attention towards patients who are most at risk.

AUGUST 2018 – Exon Skipping in a Dysf-Missense Mutant Mouse Model

Im August erhielten Verena Schöwel und ihr Team die Auszeichnung Paper of the Month. Zum Interview

Jakub Malcher, Leonie Heidt , Aurélie Goyenvalle , Helena Escobar , Andreas Marg, Cyriaque Beley , Rachid Benchaouir, Michael Bader, SimoneSpuler, Luis García, Verena Schöwel. Exon Skipping in a Dysf-Missense Mutant Mouse Model. Mol Ther Nucleic Acids. 2018 Dec 7; 13: 198–207. Published online 2018 Aug 22. doi: 10.1016/j.omtn.2018.08.013


Limb girdle muscular dystrophy 2B (LGMD2B) is without treatment and caused by mutations in the dysferlin gene (DYSF). One-third is missense mutations leading to dysferlin aggregation and amyloid formation, in addition to defects in sarcolemmal repair and progressive muscle wasting. Dysferlin-null mouse models do not allow study of the consequences of missense mutations. We generated a new mouse model (MMex38) carrying a missense mutation in exon 38 in analogy to a clinically relevant human DYSF variant (DYSF p.Leu1341Pro). The targeted mutation induces all characteristics of missense mutant dysferlinopathy, including a progressive dystrophic pattern, amyloid formation, and defects in membrane repair. We chose U7 small nuclear RNA (snRNA)-based splice switching to demonstrate a possible exon-skipping strategy in this new animal model. We show that Dysf exons 37 and 38 can successfully be skipped in vivo. Overall, the MMex38 mouse model provides an ideal tool for preclinical development of treatment strategies for dysferlinopathy.

JULI 2018 – Gut Microbiota-Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients With Stroke and Is Related to Proinflammatory Monocytes

Im Juli erhielt BIH-Professor Ulf Landmesser und sein Team die Auszeichnung Paper of the Month. Zum Interview

Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F, Kränkel N, Widera C, Sonnenschein K, Haghikia A, Weissenborn K, Fraccarollo D, Heimesaat MM, Bauersachs J, Wang Z, Zhu W, Bavendiek U, Hazen SL, Endres M, Landmesser U. Gut Microbiota-Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients With Stroke and Is Related to Proinflammatory Monocytes. Arterioscler Thromb Vasc Biol. 2018 Jul 5. pii: ATVBAHA.118.311023. doi: 10.1161/ATVBAHA.118.311023.


Gut microbiota-dependent metabolites, in particular trimethylamine N-oxide (TMAO), have recently been reported to promote atherosclerosis and thrombosis. Here, we examined for the first time the relation of TMAO and the risk of incident cardiovascular events in patients with recent first-ever ischemic stroke in 2 independent prospective cohorts. Moreover, the link between TMAO and proinflammatory monocytes as a potential contributing factor for cardiovascular risk in stroke patients was studied.

In a first study (n=78), higher TMAO plasma levels were linked with an increased risk of incident cardiovascular events including myocardial infarction, recurrent stroke, and cardiovascular death (fourth quartile versus first quartile; hazard ratio, 2.31; 95% CI, 1.25-4.23; P<0.01). In the second independent validation cohort (n=593), high TMAO levels again heralded marked increased risk of adverse cardiovascular events (fourth quartile versus first quartile; hazard ratio, 5.0; 95% CI, 1.7-14.8; P<0.01), and also after adjustments for cardiovascular risk factors including hypertension, diabetes mellitus, LDL (low-density lipoprotein) cholesterol, and estimated glomerular filtration rate (hazard ratio, 3.3; 95% CI, 1.2-10.9; P=0.04). A significant correlation was also found between TMAO levels and percentage of proinflammatory intermediate CD14++CD16+ monocytes (r=0.70; P<0.01). Moreover, in mice fed a diet enriched with choline to increase TMAO synthesis, levels of proinflammatory murine Ly6Chigh monocytes were higher than in the chow-fed control group (choline: 9.2±0.5×103 per mL versus ctr.: 6.5±0.5×103 per mL; P<0.01). This increase was abolished in mice with depleted gut microbiota (choline+ABS: 5.4±0.7×103 per mL; P<0.001 versus choline).

The present study demonstrates for the first time a graded relation between TMAO levels and the risk of subsequent cardiovascular events in patients with recent prior ischemic stroke. Our data support the notion that TMAO-related increase of proinflammatory monocytes may add to elevated cardiovascular risk of patients with increased TMAO levels.

JUNI 2018 – SGK1 induces vascular smooth muscle cell calcification through NF-κB signaling

Im Juni erhielten Ioana Alesutan und ihr Team die Auszeichnung Paper of the Month. Zum Interview

Voelkl J, Luong TT, Tuffaha R, Musculus K, Auer T, Lian X, Daniel C, Zickler D, Boehme B, Sacherer M, Metzler B, Kuhl D, Gollasch M, Amann K, Müller DN, Pieske B, Lang F, Alesutan I. SGK1 induces vascular smooth muscle cell calcification through NF-κB signaling. J Clin Invest. 2018 Jul 2;128(7):3024-3040. doi: 10.1172/JCI96477.


edial vascular calcification, associated with enhanced mortality in chronic kidney disease (CKD), is fostered by osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Here, we describe that serum- and glucocorticoid-inducible kinase 1 (SGK1) was upregulated in VSMCs under calcifying conditions. In primary human aortic VSMCs, overexpression of constitutively active SGK1S422D, but not inactive SGK1K127N, upregulated osteo-/chondrogenic marker expression and activity, effects pointing to increased osteo-/chondrogenic transdifferentiation. SGK1S422D induced nuclear translocation and increased transcriptional activity of NF-κB. Silencing or pharmacological inhibition of IKK abrogated the osteoinductive effects of SGK1S422D. Genetic deficiency, silencing, and pharmacological inhibition of SGK1 dissipated phosphate-induced calcification and osteo-/chondrogenic transdifferentiation of VSMCs. Aortic calcification, stiffness, and osteo-/chondrogenic transdifferentiation in mice following cholecalciferol overload were strongly reduced by genetic knockout or pharmacological inhibition of Sgk1 by EMD638683. Similarly, Sgk1 deficiency blunted vascular calcification in apolipoprotein E-deficient mice after subtotal nephrectomy. Treatment of human aortic smooth muscle cells with serum from uremic patients induced osteo-/chondrogenic transdifferentiation, effects ameliorated by EMD638683. These observations identified SGK1 as a key regulator of vascular calcification. SGK1 promoted vascular calcification, at least partly, via NF-κB activation. Inhibition of SGK1 may, thus, reduce the burden of vascular calcification in CKD.

MAI 2018 – Distinct Housing Conditions Reveal a Major Impact of Adaptive Immunity on the Course of Obesity-Induced Type 2 Diabetes

Im Mai erhielten Clinician Scientist Julia Sbierski-Kind und ihr Team die Auszeichnung Paper of the Month. Zum Interview

Sbierski-Kind J, Kath J, Brachs S, Streitz M, von Herrath MG, Kühl AA, Schmidt-Bleek K, Mai K, Spranger J, Volk HD. Distinct Housing Conditions Reveal a Major Impact of Adaptive Immunity on the Course of Obesity-Induced Type 2 Diabetes. Front Immunol. 2018; 9: 1069. Published online 2018 May 28. doi:  10.3389/fimmu.2018.01069


Obesity is associated with adipose tissue inflammation, insulin resistance, and the development of type 2 diabetes (T2D). However, our knowledge is mostly based on conventional murine models and promising preclinical studies rarely translated into successful therapies. There is a growing awareness of the limitations of studies in laboratory mice, housed in abnormally hygienic specific pathogen-free (SPF) conditions, as relevant aspects of the human immune system remain unappreciated. Here, we assessed the impact of housing conditions on adaptive immunity and metabolic disease processes during high-fat diet (HFD). We therefore compared diet-induced obesity in SPF mice with those housed in non-SPF, so-called “antigen exposed” (AE) conditions. Surprisingly, AE mice fed a HFD maintained increased insulin levels to compensate for insulin resistance, which was reflected in islet hyperplasia and improved glucose tolerance compared to SPF mice. By contrast, we observed higher proportions of effector/memory T cell subsets in blood and liver of HFD AE mice accompanied by the development of non-alcoholic steatohepatitis-like liver pathology. Thus, our data demonstrate the impact of housing conditions on metabolic alterations. Studies in AE mice, in which physiological microbial exposure was restored, could provide a tool for revealing therapeutic targets for immune-based interventions for T2D patients.

APRIL 2018 – Diabetes mellitus in pregnancy leads to growth restriction and epigenetic modification of the Srebf2 gene in rat fetuses

Im April erhielten Clinician Scientist Michaela Golić und Ralf Dechend vom TRG Embryonale Programmierung von Herz- und Stoffwechsel-Krankheiten die Auszeichnung Paper of the Month.

Golic, M.; Stojanovska, V.; Bendix, I.; Wehner, A.; Herse, F.; Haase, N.; Kräker, K.; Fischer, C.; Alenina, N.; Bader, M.; Schütte, T.; Schuchardt, M.; van der Giet, M.; Henrich, W.; Muller, D.N.; Felderhoff-Müser, U.; Scherjon, S.; Plösch, T.; Dechend, R. Diabetes mellitus in pregnancy leads to growth restriction and epigenetic modification of the Srebf2 gene in rat fetuses. Hypertension. 2018;71:911-920.


Diabetic pregnancy is correlated with increased risk of metabolic and neurological disorders in the offspring putatively mediated epigenetically. Little is known about epigenetic changes already present in fetuses of diabetic pregnancies. We aimed at characterizing the perinatal environment after preexisting maternal diabetes mellitus and at identifying relevant epigenetic changes in the fetus. We focused on the transcription factor Srebf2 (sterol regulatory element binding transcription factor 2), a master gene in regulation of cholesterol metabolism. We tested whether diabetic pregnancy induces epigenetic changes in the Srebf2 promoter and if they become manifest in altered Srebf2 gene expression. We worked with a transgenic rat model of type 2 diabetes mellitus (Tet29) in which the insulin receptor is knocked down by doxycycline-induced RNA interference. Doxycycline was administered preconceptionally to Tet29 and wild-type control rats. Only Tet29 doxycycline dams were hyperglycemic, hyperinsulinemic, and hyperlipidemic. Gene expression was analyzed with quantitative real-time reverse transcriptase polymerase chain reaction and CpG promoter methylation with pyrosequencing. Immunohistochemistry was performed on fetal brains. Fetuses from diabetic Tet29 dams were hyperglycemic and growth restricted at the end of pregnancy. They further displayed decreased liver and brain weight with concomitant decreased microglial activation in the hippocampus in comparison to fetuses of normoglycemic mothers. Importantly, diabetic pregnancy induced CpG hypermethylation of the Srebf2 promoter in the fetal liver and brain, which was associated with decreased Srebf2 gene expression. In conclusion, diabetic and hyperlipidemic pregnancy induces neurological, metabolic, and epigenetic alterations in the rat fetus. Srebf2 is a potential candidate mediating intrauterine environment-driven epigenetic changes and later diabetic offspring health.

MÄRZ 2018 – Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression

Im März erhält der BIH-Professor für Experimentelle Herz-Kreislaufforschung Holger Gerhardt die Auszeichnung BIH Paper of the Month. Zum Interview

Vion AC, Alt S, Klaus-Bergmann A, Szymborska A, Zheng T, Perovic T, Hammoutene A, Oliveira MB, Bartels-Klein E, Hollfinger I, Rautou PE, Bernabeu MO, Gerhardt H. Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. J Cell Biol. 201706151. DOI: 10.1083/jcb.201706151


Blood flow shapes vascular networks by orchestrating endothelial cell behavior and function. How endothelial cells read and interpret flow-derived signals is poorly understood. Here, we show that endothelial cells in the developing mouse retina form and use luminal primary cilia to stabilize vessel connections selectively in parts of the remodeling vascular plexus experiencing low and intermediate shear stress. Inducible genetic deletion of the essential cilia component intraflagellar transport protein 88 (IFT88) in endothelial cells caused premature and random vessel regression without affecting proliferation, cell cycle progression, or apoptosis. IFT88 mutant cells lacking primary cilia displayed reduced polarization against blood flow, selectively at low and intermediate flow levels, and have a stronger migratory behavior. Molecularly, we identify that primary cilia endow endothelial cells with strongly enhanced sensitivity to bone morphogenic protein 9 (BMP9), selectively under low flow. We propose that BMP9 signaling cooperates with the primary cilia at low flow to keep immature vessels open before high shear stress–mediated remodeling.

FEBRUAR 2018 – CLCN2 chloride channel mutations in familial hyperaldosteronism type II

Im Februar erhielt die BIH Johanna Quandt Professorin Ute Scholl die Auszeichnung Paper of the Month. Zum Interview

Ute I. Scholl, Gabriel Stölting, Julia Schewe, Anne Thiel, Hua Tan, Carol Nelson-Williams, Alfred A. Vichot, Sheng Chih Jin, Erin Loring, Verena Untiet, Taekyeong Yoo, Jungmin Choi, Shengxin Xu, Aihua Wu, Marieluise Kirchner, Philipp Mertins, Lars C. Rump, Ali Mirza Onder, Cory Gamble, Daniel McKenney, Robert W. Lash, Deborah P. Jones, Gary Chune, Priscila Gagliardi, Murim Choi, Richard Gordon, Michael Stowasser, Christoph Fahlke & Richard P. Lifton. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nature Genetics 2018. DOI: 10.1038/s41588-018-0048-5


Primary aldosteronism, a common cause of severe hypertension1, features constitutive production of the adrenal steroid aldosterone. We analyzed a multiplex family with familial hyperaldosteronism type II (FH-II)2 and 80 additional probands with unsolved early-onset primary aldosteronism. Eight probands had novel heterozygous variants in CLCN2, including two de novo mutations and four independent occurrences of a mutation encoding an identical p.Arg172Gln substitution; all relatives with early-onset primary aldosteronism carried the CLCN2 variant found in the proband. CLCN2 encodes a voltage-gated chloride channel expressed in adrenal glomerulosa that opens at hyperpolarized membrane potentials. Channel opening depolarizes glomerulosa cells and induces expression of aldosterone synthase, the rate-limiting enzyme for aldosterone biosynthesis. Mutant channels show gain of function, with higher open probabilities at the glomerulosa resting potential. These findings for the first time demonstrate a role of anion channels in glomerulosa membrane potential determination, aldosterone production and hypertension. They establish the cause of a substantial fraction of early-onset primary aldosteronism.

JANUAR 2018 – Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma

Im Januar erhielt das Team um Patrick Hundsdörfer und BIH Charité Clinician Scientist Viktor Arnhold die Auszeichnung Paper of the Month. Zum Interview

Viktor Arnhold, Karin Schmelz, Jutta Proba, Annika Winkler, Jasmin Wünschel, Joern Toedling, Hedwig E. Deubzer, Annette Künkele, Angelika Eggert, Johannes H. Schulte1 and Patrick Hundsdoerfer. Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma. Oncotarget. 2018; 9:2304-2319.


Fewer than 50% of patients with high-risk neuroblastoma survive five years after diagnosis with current treatment protocols. Molecular targeted therapies are expected to improve survival. Although MDM2 has been validated as a promising target in preclinical models, no MDM2 inhibitors have yet entered clinical trials for neuroblastoma patients. Toxic side effects, poor bioavailability and low efficacy of the available MDM2 inhibitors that have entered phase I/II trials drive the development of novel MDM2 inhibitors with an improved risk-benefit profile. We investigated the effect of the novel MDM2 small molecular inhibitor, DS-3032b, on viability, proliferation, senescence, migration, cell cycle arrest and apoptosis in a panel of six neuroblastoma cell lines with different TP53 and MYCN genetic backgrounds, and assessed efficacy in a murine subcutaneous model for high-risk neuroblastoma. Re-analysis of existing expression data from 476 primary neuroblastomas showed that high-level MDM2 expression correlated with poor patient survival. DS-3032b treatment enhanced TP53 target gene expression and induced G1 cell cycle arrest, senescence and apoptosis. CRISPR-mediated MDM2 knockout in neuroblastoma cells mimicked DS-3032b treatment. TP53 signaling was selectively activated by DS-3032b in neuroblastoma cells with wildtype TP53, regardless of the presence of MYCN amplification, but was significantly reduced by TP53 mutations or expression of a dominant-negative TP53 mutant. Oral DS-3032b administration inhibited xenograft tumor growth and prolonged mouse survival. Our in vitro and in vivo data demonstrate that DS-3032b reactivates TP53 signaling even in the presence of MYCN amplification in neuroblastoma cells, to reduce proliferative capacity and cause cytotoxicity.

DEZEMBER 2017 – A Transgenic Dual-Luciferase Reporter Mouse for Longitudinal and Functional Monitoring of T Cells In Vivo

Im Dezember wurde die BIH Johanna Quandt-Professorin Il-Kang Na und Martin Szyska mit dem Paper of the Month ausgezeichnet. Zum Interview

Martin Szyska, Stefanie Herda, Stefanie Althoff, Andreas Heimann, Josefine Russ, Daniele D'Abundo, Tra My Dang, Isabell Durieux, Bernd Dörken, Thomas Blankenstein and Il-Kang Na. A Transgenic Dual-Luciferase Reporter Mouse for Longitudinal and Functional Monitoring of T Cells In Vivo. Cancer Immunol Res. 2018 Jan;6(1):110-120. doi: 10.1158/2326-6066.CIR-17-0256. Epub 2017 Dec 19


Adoptive T-cell therapy (ATT) efficacy is limited when targeting large solid tumors. The evaluation of ATT outcomes using accessory treatment would greatly benefit from an in vivo monitoring tool, allowing the detection of functional parameters of transferred T cells. Here, we generated transgenic bioluminescence imaging of T cells (BLITC) mice expressing an NFAT-dependent click-beetle luciferase and a constitutive Renilla luciferase, which supports concomitant in vivo analysis of migration and activation of T cells. Rapid transferability of our system to preestablished tumor models was demonstrated in the SV40-large T antigen model via both crossbreeding of BLITC mice into a T-cell receptor (TCR)-transgenic background and TCR transduction of BLITC T cells. We observed rapid tumor infiltration of BLITC CD8+ T cells followed by a burst-like activation that mirrored rejection kinetics. Using the BLITC reporter in the clinically relevant H-Y model, we performed female to male transfers and detected H-Y-specific alloreactivity (graft-versus-host disease) in vivo In an H-Y solid tumor model, we found migration of adoptively transferred H-Y TCR-transgenic CD4+ T cells into the tumor, marked by transient activation. This suggests a rapid inactivation of infiltrating T cells by the tumor microenvironment, as confirmed by their expression of inhibitory receptors. In summary, the BLITC reporter system facilitates analysis of therapeutic parameters for ATT, is rapidly transferable to models of interest not restricted to tumor research, and is suitable for rapid screening of TCR clones for tumor rejection kinetics, as well as off-target effects.

NOVEMBER 2017 (2) – Salt-responsive gut commensal modulates TH17 axis and disease

Im Oktober gab es keine Auszeichnung, dafür wurden im November zwei Paper ausgezeichnet.

Im November erhielten Dominik N. Müller und Nicola Wilck die Auszeichnung Paper of the Month. Folgender MDC Insights Artikel gibt den Inhalt der Publikation wieder Darmbakterien reagieren empfindlich auf Salz.

Nicola Wilck, Mariana G. Matus, Sean M. Kearney, Scott W. Olesen, Kristoffer Forslund, Hendrik Bartolomaeus, Stefanie Haase, Anja Mähler, András Balogh, Lajos Markó, Olga Vvedenskaya, Friedrich H. Kleiner, Dmitry Tsvetkov, Lars Klug, Paul I. Costea, Shinichi Sunagawa, Lisa Maier, Natalia Rakova, Valentin Schatz, Patrick Neubert, Christian Frätzer, Alexander Krannich, Maik Gollasch, Diana A. Grohme, Beatriz F. Côrte-Real, Roman G. Gerlach, Marijana Basic, Athanasios Typas, Chuan Wu, Jens M. Titze, Jonathan Jantsch, Michael Boschmann, Ralf Dechend, Markus Kleinewietfeld, Stefan Kempa, Peer Bork, Ralf A. Linker, Eric J. Alm & Dominik N. Müller. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589. 30. November 2017.

Die Publikation steht hier zum Download zur Verfügung.


A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut–immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.

NOVEMBER 2017 (1) – Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors

Im Oktober gab es keine Auszeichnung, dafür wurden im November zwei Paper ausgezeichnet.

Im November erhielt der BIH Charité Clinician Scientist Programm-Teilnehmer Anton G. Henssen und sein Team die Auszeichnung Paper of the Month. Zum Interview

Anton G. Henssen, Casie Reed, Eileen Jiang1, Heathcliff Dorado Garcia, Jennifer von Stebut, Ian C. MacArthur, Patrick Hundsdoerfer, Jun Hyun Kim, Elisa de Stanchina, Yasumichi Kuwahara, Hajime Hosoi, Neil J. Ganem, Filemon Dela Cruz, Andrew L. Kung, Johannes H. Schulte, John H. Petrini and Alex Kentsis. Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors. Science Translational Medicine. 01 Nov 2017. Vol. 9, Issue 414. DOI: 10.1126/scitranslmed.aam9078

Die Publikation steht hier zum Download zur Verfügung.


Despite intense efforts, the cure rates of childhood and adult solid tumors are not satisfactory. Resistance to intensive chemotherapy is common, and targets for molecular therapies are largely undefined. We have found that the majority of childhood solid tumors, including rhabdoid tumors, neuroblastoma, medulloblastoma, and Ewing sarcoma, express an active DNA transposase, PGBD5, that can promote site-specific genomic rearrangements in human cells. Using functional genetic approaches, we discovered that mouse and human cells deficient in nonhomologous end joining (NHEJ) DNA repair cannot tolerate the expression of PGBD5. In a chemical screen of DNA damage signaling inhibitors, we identified AZD6738 as a specific sensitizer of PGBD5-dependent DNA damage and apoptosis. We found that expression of PGBD5, but not its nuclease activity–deficient mutant, was sufficient to induce sensitivity to AZD6738. Depletion of endogenous PGBD5 conferred resistance to AZD6738 in human tumor cells. PGBD5-expressing tumor cells accumulated unrepaired DNA damage in response to AZD6738 treatment and underwent apoptosis in both dividing and G1-phase cells in the absence of immediate DNA replication stress. Accordingly, AZD6738 exhibited nanomolar potency against most neuroblastoma, medulloblastoma, Ewing sarcoma, and rhabdoid tumor cells tested while sparing nontransformed human and mouse embryonic fibroblasts in vitro. Finally, treatment with AZD6738 induced apoptosis and regression of human neuroblastoma and medulloblastoma tumors engrafted in immunodeficient mice in vivo. This effect was potentiated by combined treatment with cisplatin, including substantial antitumor activity against patient-derived primary neuroblastoma xenografts. These findings delineate a therapeutically actionable synthetic dependency induced in PGBD5-expressing solid tumors.

SEPTEMBER 2017 – Unbiased identification of T cell receptors targeting immunodominant peptide-MHC complexes for T cell receptor immunotherapy

Im September erhielten Wolfgang Uckert, Felix Lorenz und ihr Team die Auszeichnung Paper of the Month. Zum Interview

Lorenz FKM, Ellinger C, Kieback E, Wilde S, Lietz M, Schendel DJ, Uckert W. Unbiased identification of T cell receptors targeting immunodominant peptide-MHC complexes for T cell receptor immunotherapy. Hum Gene Ther. 2017 Sep 26. doi: 10.1089/hum.2017.122.

Die Publikation steht hier zum Download zur Verfügung.


T cell receptor (TCR) immunotherapy uses T cells engineered with new TCRs to enable detection and killing of cancer cells. Efficacy of TCR immunotherapy depends on targeting antigenic peptides that are efficiently presented by the best suited major histocompatibility complex (MHC) molecules of cancer cells. However, efficient strategies are lacking to easily identify TCRs recognizing immunodominant peptide-MHC (pMHC) combinations utilizing any of the six possible MHC class I alleles of a cancer cell. We generated an MHC cell library and developed a platform approach to detect, isolate and re-express TCRs specific for immunodominant pMHCs. The platform approach was applied to identify a human papillomavirus (HPV16) oncogene E5-specific TCR, recognizing a novel, naturally processed pMHC (HLA-B*15:01), and a cytomegalovirus-specific TCR targeting an immunodominant pMHC (HLA-B*07:02). The platform provides a useful tool to isolate in an unbiased manner TCRs specific for novel and immunodominant pMHC targets for use in TCR immunotherapy.

AUGUST 2017 – A novel preventive therapy for paclitaxel-induced cognitive deficits: preclinical evidence from C57BL/6 mice

Im August erhielten Wolfgang Böhmerle, Matthias Endres und Petra Hühnchen die Auszeichnung Paper of the Month. Zum Interview

Huehnchen P, Boehmerle W, Springer A, Freyer D, Endres M. A novel preventive therapy for paclitaxel-induced cognitive deficits: preclinical evidence from C57BL/6 mice. Transl Psychiatry. 2017 Aug 1;7(8):e1185. doi: 10.1038/tp.2017.149.

Die Publikation steht hier zum Download zur Verfügung.


Chemotherapy-induced central nervous system (CNS) neurotoxicity presents an unmet medical need. Patients often report a cognitive decline in temporal correlation to chemotherapy, particularly for hippocampus-dependent verbal and visuo-spatial abilities. We treated adult C57Bl/6 mice with 12 × 20 mg kg-1 paclitaxel (PTX), mimicking clinical conditions of dose-dense chemotherapy, followed by a pulse of bromodesoxyuridine (BrdU) to label dividing cells. In this model, mice developed visuo-spatial memory impairments, and we measured peak PTX concentrations in the hippocampus of 230 nm l-1, which was sevenfold higher compared with the neocortex. Histologic analysis revealed a reduced hippocampal cell proliferation. In vitro, we observed severe toxicity in slowly proliferating neural stem cells (NSC) as well as human neuronal progenitor cells after 2 h exposure to low nanomolar concentrations of PTX. In comparison, mature post-mitotic hippocampal neurons and cell lines of malignant cells were less vulnerable. In PTX-treated NSC, we observed an increase of intracellular calcium levels, as well as an increased activity of calpain- and caspase 3/7, suggesting a calcium-dependent mechanism. This cell death pathway could be specifically inhibited with lithium, but not glycogen synthase kinase 3 inhibitors, which protected NSC in vitro. In vivo, preemptive treatment of mice with lithium prevented PTX-induced memory deficits and abnormal adult hippocampal neurogenesis. In summary, we identified a molecular pathomechanism, which invokes PTX-induced cytotoxicity in NSC independent of cell cycle status. This pathway could be pharmacologically inhibited with lithium without impairing paclitaxel's tubulin-dependent cytostatic mode of action, enabling a potential translational clinical approach.

JUNI 2017 – Phospho-AXL is widely expressed in glioblastoma and associated with significant shorter overall survival

Im Juni erhielten Josefine Radke, Julia Onken und das Team die Auszeichnung Paper of the Month für die Publikation über einen Signalweg, der bei der Entstehung von malignen Gliomen eine wichtige Rolle spielt. Zum Interview

Onken J, Vajkoczy P, Torka R, Hempt C, Patsouris V, Heppner FL, Radke J. Phospho-AXL is widely expressed in glioblastoma and associated with significant shorter overall survival. Oncotarget. 2017 Jun 13. doi: 10.18632/oncotarget.18468.

Die Publikation steht hier zum Download zur Verfügung.


Receptor tyrosine kinase AXL (RTK-AXL) is regarded as a suitable target in glioblastoma (GBM) therapy. Since AXL kinase inhibitors are about to get approval for clinical use, patients with a potential benefit from therapy targeting AXL need to be identified. We therefore assessed the expression pattern of Phospho-AXL (P-AXL), the biologically active form of AXL, in 90 patients with newly diagnosed GBM, which was found to be detectable in 67 patients (corresponding to 74%). We identified three main P-AXL expression patterns: i) exclusively in the tumor vasculature (13%), ii) in areas of hypercellularity (35%), or iii) both, in the tumor vasculature and in hypercellular areas of the tumor tissue (52%). Pattern iii) is associated with significant decrease in overall survival (Hazard ratio 2.349, 95% confidence interval 1.069 to 5.162, *p=0.03). Our data suggest that P-AXL may serve as a therapeutic target in the majority of GBM patients.

MAI 2017 – An immediate-late gene expression module decodes ERK signal duration

Im Mai erhielt Nils Blüthgen und sein Team das Paper of the Month für ihre Open Access Publikation, in der sie mittels mathematischen Modellierungen den ERK Signalweg untersuchen. Die Publikation ist aus dem TRG Projekt "Systems Medicine of BRAF-driven Malignancies" hervorgegangen. Zum Interview

Uhlitz F, Sieber A, Wyler E, Fritsche-Guenther R, Meisig J, Landthaler M, Klinger B, Blüthgen N. An immediate-late gene expression module decodes ERK signal duration. Mol Syst Biol. 2017 May 3;13(5):928. doi: 10.15252/msb.20177554.

Die Publikation steht hier zum Download zur Verfügung.


The RAF-MEK-ERK signalling pathway controls fundamental, often opposing cellular processes such as proliferation and apoptosis. Signal duration has been identified to play a decisive role in these cell fate decisions. However, it remains unclear how the different early and late responding gene expression modules can discriminate short and long signals. We obtained both protein phosphorylation and gene expression time course data from HEK293 cells carrying an inducible construct of the proto-oncogene RAF By mathematical modelling, we identified a new gene expression module of immediate-late genes (ILGs) distinct in gene expression dynamics and function. We find that mRNA longevity enables these ILGs to respond late and thus translate ERK signal duration into response amplitude. Despite their late response, their GC-rich promoter structure suggested and metabolic labelling with 4SU confirmed that transcription of ILGs is induced immediately. A comparative analysis shows that the principle of duration decoding is conserved in PC12 cells and MCF7 cells, two paradigm cell systems for ERK signal duration. Altogether, our findings suggest that ILGs function as a gene expression module to decode ERK signal duration.

APRIL 2017 – Tumour ischaemia by interferon-γ resembles physiological blood vessel regression

Für ihre Arbeit über die Wirkungsweise des Botenstoff Interferon-Gamma bei der Krebsentstehung erhielten Thomas Blankenstein und Thomas Kammertöns die Auszeichnung Paper of the Month 'April'. Die Arbeit liefert Anhaltspunkte für eine verbesserte T-Zell-Therapie gegen solide Krebstumore. Zum Interview

Thomas Kammertoens, Christian Friese, Ainhoa Arina, Christian Idel, Dana Briesemeister, Michael Rothe, Andranik Ivanov, Anna Szymborska, Giannino Patone, Severine Kunz, Daniel Sommermeyer, Boris Engels, Matthias Leisegang, Ana Textor, Hans Joerg Fehling, Marcus Fruttiger, Michael Lohoff, Andreas Herrmann, Hua Yu, Ralph Weichselbaum, Wolfgang Uckert, Norbert Hübner, Holger Gerhardt, Dieter Beule, Hans Schreiber, Thomas Blankenstein. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature 545, 98–102 (04 May 2017). doi: 10.1038/nature22311

Die Publikation steht hier zum Download zur Verfügung.


The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ–GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.

MÄRZ 2017 – Complex multi-enhancer contacts captured by genome architecture mapping

Ana Pombo und ihr Team stellen in Nature eine neue Methode vor, mit der sich die dreidimensionale Topographie des gesamten Genoms kartieren lässt. Dafür erhält Pombo das Paper of the Month 'März'.

Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas LM, Branco MR, Fraser J, Dostie J, Game L, Dillon N, Edwards PA, Nicodemi M, Pombo A. Complex multi-enhancer contacts captured by genome architecture mapping. Nature. 2017 Mar 23;543(7646):519-524. doi: 10.1038/nature21411. Epub 2017 Mar 8.

Die Publikation steht hier zum Download zur Verfügung.


The organization of the genome in the nucleus and the interactions of genes with their regulatory elements are key features of transcriptional control and their disruption can cause disease. Here we report a genome-wide method, genome architecture mapping (GAM), for measuring chromatin contacts and other features of three-dimensional chromatin topology on the basis of sequencing DNA from a large collection of thin nuclear sections. We apply GAM to mouse embryonic stem cells and identify enrichment for specific interactions between active genes and enhancers across very large genomic distances using a mathematical model termed SLICE (statistical inference of co-segregation). GAM also reveals an abundance of three-way contacts across the genome, especially between regions that are highly transcribed or contain super-enhancers, providing a level of insight into genome architecture that, owing to the technical limitations of current technologies, has previously remained unattainable. Furthermore, GAM highlights a role for gene-expression-specific contacts in organizing the genome in mammalian nuclei.

FEBRUAR 2017 – Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans

Die Auszeichnung BIH Paper of the Month ‘Februar’ ging an den BIH Charité Clinican Scientist Benjamin Strücker und sein Team. In der Open Access Publikation Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans stellt Strücker eine Methode vor, mit der es möglich ist, nach Entfernung aller zellulären Bestandteile der Bauchspeicheldrüse der Ratte, die extrazelluläre Matrix mit Langerhansschen Inseln wieder zu besiedeln. In weiteren Tests konnten die Wissenschaftlerinnen und Wissenschaftler nachweisen, dass die Langerhansschen Inseln funktionsfähig waren und Insulin produzieren konnten.

H. Napierala, K.-H. Hillebrandt, N. Haep, P. Tang, M. Tintemann, J. Gassner, M. Noesser, H. Everwien, N. Seiffert, M. Kluge, E. Teegen, D. Polenz, S. Lippert, D. Geisel, A. Reutzel Selke, N. Raschzok, A. Andreou, J. Pratschke, I. M. Sauer & B. Struecker. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Scientific Reports 7. Article number: 41777 (2017) doi:10.1038/srep41777

Die Publikation steht hier zum Download zur Verfügung


Decellularization of pancreata and repopulation of these non-immunogenic matrices with islets and endothelial cells could provide transplantable, endocrine Neo- Pancreata. In this study, rat pancreata were perfusion decellularized and repopulated with intact islets, comparing three perfusion routes (Artery, Portal Vein, Pancreatic Duct). Decellularization effectively removed all cellular components but conserved the pancreas specific extracellular matrix. Digital subtraction angiography of the matrices showed a conserved integrity of the decellularized vascular system but a contrast emersion into the parenchyma via the decellularized pancreatic duct. Islets infused via the pancreatic duct leaked from the ductular system into the peri-ductular decellularized space despite their magnitude. TUNEL staining and Glucose stimulated insulin secretion revealed that islets were viable and functional after the process. We present the first available protocol for perfusion decellularization of rat pancreata via three different perfusion routes. Furthermore, we provide first proof-of-concept for the repopulation of the decellularized rat pancreata with functional islets of Langerhans. The presented technique can serve as a bioengineering platform to generate implantable and functional endocrine Neo-Pancreata.

JANUAR 2017 – CDK5RAP2 Is Required to Maintain the Germ Cell Pool during Embryonic Development

Anfang März wurde Angela M. Kaindl vom Institute of Cell Biology and Neurobiology der Charité mit dem BIH Paper of the Month ausgezeichnet. Die Veröffentlichung “CDK5RAP2 Is Required to Maintain the Germ Cell Pool during Embryonic Development” wurde in Stem Cell Reports unter Open Access Bedingungen publiziert und hat insgesamt nur fünf Autorinnen und Autoren und einen hohen Anteil an BIH-Affiliierten.

Kaindl hat in der Vergangenheit gezeigt, dass Mutationen im Gen CDK5RAP2 zu Mikrozephalie führen. Diese Arbeit zeigt zum ersten Mal, dass das ubiquitär exprimierte Cdk5rap2 auch für die Erhaltung der Keimzellen während der Embryoentwicklung erforderlich ist. So verlängern bestimmte Genveränderungen in CDK5RAP2 die Mitose der Keimzellen. Die verlängerte Mitose ist mit einem massiven Absterben der Keimzellabkömmlinge verbunden und führt bei männlichen Mäusen zur Sterilität. Die Klärung der Mechanismen, die dieses Absterben bewirken wird unser Verständnis für die Entstehung der Mikrozephalie erweitern und könnte neue Ansätze bei der Diagnose dieser und anderer Erbkrankheiten eröffnen.

Zaqout S, Bessa P, Krämer N, Stoltenburg-Didinger G, Kaindl AM. CDK5RAP2 Is Required to Maintain the Germ Cell Pool during Embryonic Development. Stem Cell Reports. 2017 Jan 31. pii: S2213-6711(17)30017-6. doi: 10.1016/j.stemcr.2017.01.002.

Da die Veröffentlichung unter Open Access Bedingungen publiziert wurde, ist sie frei verfügbar. Zum Download


Gene products linked to microcephaly have been studied foremost for their role in brain development, while their function in the development of other organs has been largely neglected. Here, we report the critical role of Cdk5rap2 in maintaining the germ cell pool during embryonic development. We highlight that infertility in Cdk5rap2 mutant mice is secondary to a lack of spermatogenic cells in adult mice as a result of an early developmental defect in the germ cells through mitotic delay, prolonged cell cycle, and apoptosis.