The scientific reproducibility crisis - winner’s curse and other causes

Matthias von Herrath, Novonordisk and Ondrej Libiger, J&J
(Matthias@lji.org)
Majority of published research does not replicate, lacks robustness

Case Reports of Pre-clinical Replication Studies in Metabolism and Diabetes

Matthias von Herrath,1,* Philippe P. Pagni,1 Kevin Grove,1 Gustaf Christoffersson,2 Mads Tang-Christensen,3 Allan Ermann Karlsen,3 and Jacob Sten Petersen3

Prinz et al., 2011; doi.org/10.1038/nrd3439-c1
Robustness

WHAT FACTORS CONTRIBUTE TO IRREPROducible RESEARCH?

- Selective reporting
- Pressure to publish
- Low statistical power or poor analysis
- Not replicated enough in original lab
- Insufficient oversight/mentoring
- Methods, code unavailable
- Poor experimental design
- Raw data not available from original lab
- Fraud
- Insufficient peer review
- Problems with reproduction efforts
- Technical expertise required for reproduction
- Variability of standard reagents
- Bad luck

WHAT FACTORS COULD BOOST REPRODUCIBILITY?

- Better understanding of statistics
- Better mentoring/supervision
- More robust design
- Better teaching
- More within-lab validation
- Incentives for better practice
- Incentives for formal reproduction
- More external-lab validation
- More time for mentoring
- Journals enforcing standards
- More time checking notebooks

Higher statistical power!!
Winner’s curse

• The **exaggeration of effect sizes** (e.g., differences) in published reports and the low probability of study replication

• If 100 labs conduct the same experiment, and only the labs with statistically significant results publish, the reported effect sizes will be exaggerated (and may even be wrong).

• This is especially true when the experiments have **low statistical power** (inadequate sample size given effect size and measurement variability).
Statistical power

• Definition: ability to reject null hypothesis when it is false ("Ability to detect an effect of a given magnitude or larger, if such an effect is present")

• Power of 80%: out of a 100 experiments, 80 will correctly reject the null hypothesis (20 won’t – false negatives)

• Statistical power <- sample size + magnitude of effect + measurement variability + alpha (significance) level + statistical test + experimental design
Example: Simulated data allows us to compare results with the ground truth

1. Sample N control mice (draw N random numbers from the distribution for Vehicle group)
2. Sample N treated mice (draw N random numbers from the distribution for Treated group)
3. Determine the effect size, i.e., difference (95% CI) of means between control and treated mice
4. Test the null hypothesis of no difference between groups
5. Repeat 100 times
Example sampling – estimates a large effect

Control mice
Mean: 100
SD: 40

Treated mice
Mean: 140
SD: 40
Example sampling – estimates no effect

Control mice
Mean: 100
SD: 40

Treated mice
Mean: 140
SD: 40
Choice of N per group determines the statistical power of the hypothesis test
Compare results for different power

40%

60%

80%

90%
Winner’s curse: low power results in exaggerated estimates of effect size
Most published studies have low power

Studies with lower statistical power are at best pilots, but often portrayed (when published) as conclusive. The need to overreach conclusions contributes to distortion of scientific reality.

Button et al., 2013; doi:10.1038/nrn3475
Many published targets – inherent model ‘noise’

Immunotherapy with translational potential

Mouse numbers are often underestimated, we recommend
> 16/group in prevention, >35/group after onset
Studies should be randomized, ideally blinded, and repeated at
different sites (cf. Gill et al. Diabetes. 2016 May;65:1310)
A comprehensive matrix of antigens did give none or no robust protection from diabetes in the NOD model (Novo Nordisk studies)

ORAL TRACK
- Mouse insulin
- Porcine insulin [after Zhang et al. PNAS 1991;88:10252]
- NN hormonally inactive insulin#1

SUBCUTANEOUS TRACK
- NN hormonally inactive insulins #1, 2 and 3 are Novo Nordisk’s proprietary insulins with varying degrees of reduced affinity for the insulin receptor
- Mouse insulin + liraglutide
- Porcine insulin + liraglutide
- NN hormonally inactive insulin#1 + liraglutide

Publications from in-house work:
- Pham et al Clin Immunol 2016;164:28
- Grönholm et al. Diabetologia 2017;60:1475
Sobering conclusions – antigenic therapy NOD

Reproducibly worked:
- InsB9:23 in IFA
- In house DNA immuno-therapy (proinsulin)

Lack of robustness:
- Oral insulins in various formulations
- All peripheral peptides in adjuvants or with acylation to prolong half-lives or via pumps

Variation of T1D incidence in the NOD model:

Effect of oral administration of porcine insulin on T1D in female NOD mice. Life table analysis of the control group and the group fed 1 mg of insulin (P = 0.02, Log rank test). Porcine insulin was administered twice for 5 weeks then once weekly thereafter until one year of age with treatment beginning at 5 weeks of age (n=27-30). Displayed in blue is the combined incidence in untreated and PBS controls from NNRC-Seattle demonstrating the difference in rate of disease onset and incidence (n=176).
Particularly problematic scenarios assuming positivity bias in publications

Low Number of experiments or replications per study

High SE

Reality

New erroneous mean

Conclusions – changes we should embrace to make the scientific method robust again

- Requiring ≥80% power results in more reliable results and replicable experiments; blinded studies, determine minimal detectable difference and biological relevance in advance
- Use pure reagents and optimal technology, share resources – collaborate for this, science has evolved and become too complex to yield meaningful results in single laboratories only
- Eliminate positivity bias – negative results need to be published and such studies/papers need to be career relevant
- Embrace a more collaborative scientific model, this will become more relevant as science and underlying technology become increasingly complex as well as for human research
- The current system is in ‘over-drive’, publish fewer, but better studies