Gene edited human muscle stem cells as Advanced Therapies

Prof. Dr. Simone Spuler

Frontiers in Translational Medicine _ Scientific and Structural Challenges _ 23 April 2021

Muscle Research Unit

https://www.mdc-berlin.de/spuler

Patient care

2500 patients in Charité muscle outpatient clinic

Diagnosis and follow-up

Supportive care

Clinical trials

Bundesministerium für Bildung und Forschung

UNTERSTÜTZT DURCH DEN IMPULS-UND VERNETZUNGSFONDS VON

HELMHOLTZ

DFG Forschungsgemeinschaft

SGK STIFTUNG GISELA KREBS

B I H — — —

Translational Research

Human muscle stem cells ATMP- new therapies Muscular dystrophy Gene editing

SUMUS Else Kröner **F**resenius **S**tiftung

Muscular dystrophies

50 different monogenic progressive disorders

Incidence 30/100.000

No treatment

It is the right time!

JL The Journal of Clinical Investigation

About	Editor	s Consultin	g Editors	For a	uthors	Alert	s Advertisi	ng/recruitment	Subscribe	Contac	t
Current	Issue	Past Issues	By special	ty –	Videos	-	Reviews 💌	Collections 👻	Clinical M	edicine	J
Review	10.11	72/JCI142031									

Stem cell therapy for muscular dystrophies

Stefano Biressi,^{1,2} Antonio Filareto,³ and Thomas A. Rando^{4,5,6}

First published September 18, 2020 - More info

Muscular dystrophies are a heterogeneous group of genetic diseases, characterized by progressive degeneration of skeletal and cardiac muscle. Despite the intense investigation of different therapeutic options, a definitive treatment has not been developed for this debilitating class of pathologies. Cell-based therapies in muscular dystrophies have been pursued experimentally for the last three decades.

nature biotechnology

News in Brief | Published: 05 August 2020 High-dose AAV gene therapy deaths

Nature Biotechnology 38, 910(2020) | Cite this article 4915 Accesses | 22 Altmetric | Metrics

The US Food and Drug Administration placed Audentes Therapeutics' phase 2 gene therapy trial for a rare neuromuscular disease on hold following the deaths of two patients receiving the higher dose of the investigational treatment AT132. Both deaths were caused by progressive liver dysfunction followed by sepsis in patients who had pre-existing liver disease. The deaths add to emerging safety concerns surrounding the use of AAV vectors. The AT132 therapy treats X-linked myotubular myopathy, a life-threatening condition characterized by profound muscle weakness

It is the right time! The Nobel Prize in Chemistry 2020 Development of a method for genome editing

Emmanuelle Charpentier

Max Planck Unit for the Science of Pathogens, Berlin, Germany

Jennifer A. Doudna

Howard Hughes Medical Center University of California, Berkeley, USA

SATELLITE CELL OF SKELETAL MUSCLE FIBERS

ALEXANDER MAURO. From The Rockefeller Institute

In the course of an electron microscopic study of the peripheral region of the skeletal muscle fiber of the frog, the presence of certain cells, intimately associated with the muscle fiber, have been observed which we have chosen to call *satellite cells*. Since these cells have not been reported previously and indeed might be of interest to students of muscle histology and furthermore, as we shall suggest, might be pertinent to the vexing problem of skeletal muscle regeneration, a brief communication describing this finding is warranted prior to a more detailed study. is that the peripheral muscle nuclei proper occur much more frequently than the satellite cells.

It is interesting that upon alerting other investigators to these findings, similar cells have been found in electron micrographs of two other muscles of the frog, namely sartorius (2) and ileofibularis (2), and of the sartorius and tongue muscle of the white rat (4). (Though the direct evidence is restricted to these two vertebrates, it seems reasonable to hazard a guess that skeletal muscle fibers of vertebrates in general contain satellite refls.)

J Biophys Biochem Cytol. 1961 Feb;9:493-5.

Nucleus

Nature, 337, 1989

Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts

T. A. Partridge^{*}, J. E. Morgan^{*}, G. R. Coulton^{*}, E. P. Hoffman[†] & L. M. Kunkel[†]

* Department of Histopathology, Charing Cross and Westminster Medical School, Fulham Palace Road, London W6 8RF, UK † Division of Genetics, Childrens Hospital, Pediatrics, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA

An important corollary to the recent advances in our understanding

Failure of transplantation of myoblasts for therapeutic purposes

1995

832

THE NEW ENGLAND JOURNAL OF MEDICINE

Sept. 28, 1995

MYOBLAST TRANSFER IN THE TREATMENT OF DUCHENNE'S MUSCULAR DYSTROPHY

JERRY R. MENDELL, M.D., JOHN T. KISSEL, M.D., ANTHONY A. AMATO, M.D., WENDY KING, B.S., L.P.T., LINDA SIGNORE, R.N., THOMAS W. PRIOR, PH.D., ZARIFE SAHENK, M.D., SANDRA BENSON, B.A.,
PATRICIA E. MCANDREW, PH.D., ROBERT RICE, PH.D., HAIKADY NAGARAJA, PH.D., RALPH STEPHENS, PH.D., LAURA LANTRY, M.S., GLEN E. MORRIS, PH.D., AND ARTHUR H.M. BURGHES, PH.D.

Cells with possible myogenic potential

Cell	Characteristics	Systemic delivery	+	-
Satellite cell	Under basal lamina, selfrenewal, Pax7+, CD56+, MyoD-	No	Regeneration and SC pool	No <i>in vivo</i> trials with human SCs, low numbers
MuSC	Integrin α7+, CD34+	?	Regeneration and SC pool	As Sat cells
SM Precursors	ß1-integrin+, CXCR4+, CD45-, Sca1-, Mac1-	?	++ Regenerative potential, SC replenishing	As Sat cells
Myoblasts	After Sat cell activation, MyoD+, Desmin+, Myf5+	No	Easily isolated and expanded, many human trials	Not efficient in regeneration. Limited in vitro expansion
Mesangioblasts	Blood vessel wall, Flk1+, CD34+, Sca1+, vWF-	Yes	Easy to expand, human trial in progress	In vitro myogenesis requires myoblasts
Pericytes/ MDSCs	Periphery of blood vessel, NG2, proteoglycan, ALP, PDGFRβ, CD56-	Yes	Easy to expand	Variable, limited regenerative potential
SP cells	Sca1+, ABCG2+transporter, CD45- , CD43-, Pax7-, c-kit-	?	Can be isolated from different tissues	Must be cocultured with myoblasts
CD133+	Blood or muscle tissue	Yes	Muscle regeneration better than with myoblasts	Efficient myogenesis needs myoblasts or Wnt7a+ cells
Embryonic stem cells	Derived from blastocyst	Yes	Pluripotency	Ethics, immune response, tumorigenic
IPS (Nobel prize 2012)	Can be obtained from many tissues. Oct3/4+, Sox-, c-Myc+, klf4+, Nanong+	Yes	Pluripotency	Genetic manipulation tumorigenicity, risk of viral infection
MSCs	Many tissues, CD34-, CD45-, CD73+, CD90+, CD105+, CD117+	Yes	Readily available, autologous	Delivery unclear, limited long- term therapeutic contribution
PW1-interstitial cells	Muscle interstitial cells. PW1+	?	Contribute to muscle regeneration, SC and interstitial population	No information on human cells

2011: No satellite cells **9** No muscle regeneration!

- Lepper C, Partridge TA, Fan CM. An absolute requirement for Pax7positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138: 3639-3646; 2011
- Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A. Pax7expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development. 138: 3647-3656; 2011
- Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139: 2845-2856; 2012

Characterization of satellite cells

The muscle stem cell: satellite cell

Muscle regeneration depends on satellite cells

Pax7+ satellite cells enrich within the human myofiber fragment

- Human skeletal ٠ muscle biopsy specimen
- 5^3mm ٠

- Manual dissection ٠ into fiber fragments
- **No** enzymatic digest ٠

Human muscle fiber fragment 7 days in culture Enrichment of PAX7 positive cells within the fragment

Myoblasts form colonies outside the fiber fragments and fuse to myotubes

Proof: Ex vivo expanded human satellite cells regenerate muscle in vivo

Our innovation: new isolation and cultivation technique for human muscle stem cells

100% myogenic cells

 High regenerative potential

- IP: Charité/MDC (DE10 2014 216872), 2015 PCT (WO 2016/030371), since 2017 national phase EU, US, JPN
- Marg et al., J Clin Invest, 2014
- Marg et al., Nature Communications, 2019

Advanced Therapy Medicinal Products (ATMP): young and growing market

ATMPS IN THE EU MARKET

АТМР	Duaduat	Market appro	Orphan		
classification	Product	ΕΜΑ	FDA	design.	
	Glybera [®]	2012-2017*		х	
	Strimvelis®	2016		х	
	Kymriah®	2018	2018	х	
GMTP	Yescarta®	2018	2017	х	
	Imlygic [®]	2015	2015	X/-	
	Luxturna®	2018	2017	х	
	Zynteglo®	2019		х	
	Holoclar®	2015		х	
ТЕР	MACI®	2013-2014*	2016		
(autologous)	ChondroCelect [®]	2009-2016*			
	Spherox®	2017			
	Zalmoxis®	2016		х	
sCTMP	Provenge®	2013-2015*	2010		
	Alosifel®	2018		х	

FORECAST OF WORLDWIDE REVENUE FROM REGENERATIVE MEDICINE NEXT YEARS (IN BILLION €)

<u>Roland Berger</u>: Focus regenerative medicine. "The next generation of therapeutic products is set to shake up the pharmaceutical world." Page 5 <u>https://www.rolandberger.com/publications/publication_pdf/roland_berger_regenerative_medicine.pdf/</u>

Number of registered clinical trials

600 500

400

300 200 100

Gene Therapy

Cell Therapy

Phase 1 Phase 2 Phase 3

>1000 ATMPS CURRENTLY IN CLINICAL STUDIES

- *** First approved ATMPs** were **not successful** on the EU market: Difficulties in national pricing negotiations, competing products
- Newer ATMPs are primarily targeting rare diseases (orphan designation).

1st in human clinical trial using primary human muscle stem cells as ATMP

Indication: Epispadias

POC: yes, uncontrolled design Kajbafzadeh, 2008, 2011

Preclinic: Supported by BIH/SPARK

Trial: Financed by BMBF (from 5.2021)

Timeframe: 2022-2025

"Gene therapy" I: Exon-Skipping and Stopcodon-readthrough **X** = Mutation

"Gene therapy" II: Additional cDNA copy

"Gene therapy" II: Additional cDNA copy

Sarepta Therapeutics: Muscular dystrophy trial for SGCB mutations

"Gene therapy" III: Precise correction of mutation

Family with sarcoglycanopathy

Both mutations were previously reported

p.Ala53Thr, missense

95% pure myoblasts were obtained from the LGMD2D patient

+ Hoechst

SGCA c.157G>A induces co-skipping of exons 2 and 3

Generation and characterization of patient iPSC

Ectoderm

Beginning rosette formation, beginning stratification

Mesoderm Immature mesenchyme

Endoderm Cuboidal vacuolated epithelial cells, lining cyst-like space

Genome editing with CRISPR/Cas systems

Kim et al., 2014 Nat Rev Gen

<u>Adenine Base Editing (ABE) for precise A>G nucleotide conversions</u>

No editing of predicted off-target sites

Spuler; BIH_Lecture_23. April 2021

SGCA c.157Grep express sarcoglycan, give rise to human myofibers in vivoand make new muscle stem cellsNSG mice

Escobar 2021 J Clin Inv Ins 36

16 Gy

Are we there?

Are we there?

Transfection of primary muscle human stem cells with mRNA-GFP

Stadelmann, unpublished

Transfection of primary muscle human stem cells with ABE-mRNA plus sgRNA

Stadelmann, unpublished

Summary:

Translational Workflow for gene corrected primary human muscle stem cells

What is next: in vivo editing

Coop: Ralf Kühn, MDC

Muscle Research Unit

https://www.mdc-berlin.de/spuler

Patient care

2500 patients in Charité muscle outpatient clinic

Diagnosis and follow-up

Supportive care

Clinical trials

Bundesministerium für Bildung und Forschung

UNTERSTÜTZT DURCH DEN IMPULS-UND VERNETZUNGSFONDS VON

HELMHOLTZ

DFG Forschungsgemeinschaft

SGK STIFTUNG GISELA KREBS

B I H — — —

Translational Research

Human muscle stem cells ATMP- new therapies Muscular dystrophy Gene editing

SUMUS Else Kröner **F**resenius **S**tiftung

Thank you