

What does it take to translate? Lessons learned in Regenerative Medicine

Duda GN. ^{1,2,4}, Petersen A^{1,2}, Brauer E^{1,2}, Cipitria A^{1,2}, Checa S^{1,2}, Soodmand E^{1,2}, Volk HD. ^{2,3}, Schmidt-Bleek K. ^{1,2}, Bucher CH. ^{1,2}

- ¹ Julius Wolff Institute and Center for Musculoskeletal Surgery
- ² Berlin Institute of Health Center for Regenerative Therapies
- ³ Institute for Medical Immunology
- ⁴ Wyss Institute for Biologically Inspired Engineering, Harvard

Charité - Universitätsmedizin Berlin

Charité

1860	Medical training at the Charité
1890	Foundation 1st Clinic for
	Orthopaedic Surgery at the Charité
1892	Most relevant orthopaedic publication:
	"The Law of Transformation of Bone"
	("Das Gesetz der Transformation der Knochen")
1902	Initiation of the German Orthopaedic Society

2008 Foundation of the Julius Wollf Institute

Julius Wolff (1836 – 1902)

Regeneration - complete

Regeneration - conserved

- Up to 10 % of fx patients experience delayed or non-union
- Real delayed healing ratio higher but unknown
- With aging population, fx numbers will increase
- In elderly patients, delayed or unsatisfactory fracture healing outcome is rising

fracture

primary fracture treatment

Resulting non-union (CT image)

Healing after revision with reosteosynthesis and BMP2

Image adapted from Schmidt-Bleek et al., 2015, CGFR

- New, globally accepted treatment concepts based on results from KFO 102, SFB 760, FOR 2165
- Translation requires crossing borders medical need mechanistic knowledge technology innovation dissemination acceptance
- Translation is... first in patient?

- New, globally accepted treatment concepts based on results from KFO 102, SFB 760, FOR 2165
- Translation requires crossing borders medical need mechanistic knowledge technology innovation dissemination acceptance
- Translation is... reimbursement established?

- New, globally accepted treatment concepts based on results from KFO 102, SFB 760, FOR 2165
- Translation requires crossing borders
 medical need mechanistic knowledge technology innovation dissemination acceptance
- Translation is... establish a new standard of care?

Hip Joint

10 patients (8m/2w)

age: 50 - 68 years

Knee Joint

9 patients (6m/3w)

age: 60 - 75 years

Globally used reference https://orthoload.com/
Basis for pre-clinical assessments of any new device (ASTM, ISO) and failure analyses

Lessons learned...

- Academy is thrilled by the new and unknown
- Industry is eager in novelty but with clear de-risking strategy
 - reliable information/knowledge/technology
 - that easily integrates into existing processes

- new knowledge: Helps to compensate or reduce existing risks
- new product: Substantially progresses towards reduced risk

- New, globally accepted treatment concepts based on results from KFO 102, SFB 760, FOR 2165
- Translation requires crossing borders
 medical need mechanistic knowledge technology innovation dissemination acceptance
- Translation is... establish a new standard of care?

Expert Tibial Nail PROtect

Enhance your first line of defense

- Start 1998
 adapting a concept established in stents
- Preclinical studies (DFG funded)
 - PoC in small and large animal models
- Patent filed (release of growth factors)
 - Company licenced
- Initially: local release of proteins
 - Freedom of operation?
 - BMP or TGF-ß/IGF-1 each \$ 60 Mio
- Hand over Charité to DePuySynthes
 - Upscale production
 - FDA approval (20m², \$20 Mio) each

Intended use*

The Expert Tibial Nail PROtect is intended to be used for the surgical treatment and stabilization of fractures of the tibia.

Expert Tibial Nail PROtect

Enhance your first line of defense

- Start 1998
 adapting a concept established in stents
- Preclinical studies (DFG funded)
 - PoC in small and large animal models
- Patent filed (release of growth factors)
 - Company licenced
- Initially: local release of proteins
 - Freedom of operation?
 - BMP or TGF-ß/IGF-1 each \$ 60 Mio
- Hand over Charité to DePuySynthes
 - Upscale production
 - FDA approval (20m², \$20 Mio) each
- BUT: No prove for major claim possible

Lessons learned...

Definition of hypothesis is key

- Early on health economic assessment
- Opportunity check
 - definition of technologies (own IP)
 - "freedom to operate" (other IP)
 - identify stake holders
- Clinical approval pathway(s)

- New, globally accepted treatment concepts based on results from KFO 102, SFB 760, FOR 2165
- Translation requires crossing borders
 medical need mechanistic knowledge technology innovation dissemination acceptance
- Translation is... establish a new standard of care?

(Schell et al. Bone 2006; Seebeck et al. Bone 2005; Schell et al. J Orthop Res 2005; Klein et al. J Orthop Res 2004; Klein et al. Calc Tissue Int 2004; Klein et al. J Orthop Res 2003)

2 weeks 3 weeks 6 weeks 9 weeks

(Schell et al. Bone 2006; Seebeck et al. Bone 2005; Schell et al. J Orthop Res 2005; Klein et al. J Orthop Res 2004; Klein et al. Calc Tissue Int 2004; Klein et al. J Orthop Res 2003)

Lower torsion leads to improved bone healing

modified thread

standard

Lower torsion leads to improved bone healing

Randomized controlled trial (**LoE I**), **N = 142**, multi-center study (8 sites in 3 countries): **No difference in healing success**

Randomized controlled trial (**LoE I**), **N = 142**, multi-center study (8 sites in 3 countries): **No difference in healing success** ... **but** ...

Symmetry Ratio of the Vertical GRF Impulse

Randomized controlled trial (**LoE I**), **N = 142**, multi-center study (8 sites in 3 countries): **No difference in healing success**

Lessons learned...

Solid basic understanding
 bring novel solution based on novel concept/understanding

- Relevance of initial user group (clinical trials and beyond)
 - ensure endpoint definition and study design
 - engage potent multiplier
 - train the experts to novel concepts, ensure who is user
 - stay in the loop (ongoing learning curve)

- New, globally accepted treatment concepts based on results from KFO 102, SFB 760, FOR 2165
- Translation requires crossing borders medical need mechanistic knowledge technology innovation dissemination acceptance
- Translation is...
 establish a new standard of care?

S. Reinke, et al., Sci Transl Med. 2013

Accumulation:
3-fold at fracture site
compared to blood levels

Inflammation:

- Apoptosis of progenitors
- > Reduced osteogenesis

PoC in a clinically relevant mouse model

PoC in a clinically relevant mouse model

Phase I: Biomarker Development – Mechanism - PoC

PoC in a clinically relevant mouse model

Phase II: Biomarker Transfer Clinics – Confirmation

Predict healing outcome

Standard

early & targeted intervention

Phase II: Biomarker Transfer Clinics – Confirmation

Determine CD8+TEMRA

levels

Predict healing outcome

Phase III: Prospektive Biomarker Validation

Determine CD8+TEMRA

levels

Predict healing outcome

Phase III: Prospektive Biomarker Validation

multicenter-prospective study

Coordination: Simon Reinke / Sven Geißler

Patients-in (03/2020): 515/640 drop out rate: 13% (67) Women: 47% Mean Age: 53y

1. Endpoint (4.5 months):

Patients (total): 305/448 (68%) Non-Healed: 109/305 (**35%**)

2. Endpoint > 9 months:

Patients (total): 259/305 (85%) Non-Healed: 46/259 (18%)

Vivantes

Spandau

Universitätsklinikum

Prof. Dr. Josten

Carl Gustav Carus

Prof. Dr. Ekkernkamp Prof. Dr. Schaser

Blood Sampling & 1-year Follow-Up (min. 640 complete patient-sample data)

CHARITÉ

Prof. Dr. Stange

Universitätsklinikum

BMBF

Phase III: Prospektive Biomarker Validation

multicenter-prospective study

Coordination: Simon Reinke / Sven Geißler

Patients-in (03/2020): 515/640 drop out rate: 13% (67) Women: 47% Mean Age: 53y

1. Endpoint (4.5 months):

Patients (total): 305/448 (68%) Non-Healed: 109/305 (**35%**)

2. Endpoint > 9 months:

Patients (total): 259/305 (85%) Non-Healed: 46/259 (18%) Technology development but no market access

 Market access but no own technology

Intended use:

This reagent is used as an aid in the differential diagnosis of patients with long bone fractures having, or suspected of being at risk of having, a biologically compromised healing capacity resulting in delayed or permanent failure of bone healing (= non-union or pseudoarthrosis).

Lessons learned...

- Idea & concept (including basic science)
- Translational partners are real partners
 - people, role in organisation, trust, long standing partnership
- Diversity in stake holders
 - technology ownership vs. market access vs. sales capabilities
 - in companies: different languages, different (sales) strategies
 - tech transfer, own IP strategy, own business development

Learn from bone healing for muscle regeneration?

- Anti-inflammation to enable regeneration
- Avoid fatty degeneration

Damm et al, Clin Biomechanics, 2019, ESB Award

Learn from bone healing for muscle regeneration?

Learn from bone healing for muscle regeneration?

- MSC transplantation improve muscle strength.
- GF alone not beneficial, but can stimulate MSCs signaling.

Pumberger et al, Biomaterials 2016 Qazi et al, Biomaterials 2017

Learn from bone healing for muscle regeneration – reduce scarring

Significant reduction in scaring with MSCs & GFs

Pumberger et al, Biomaterials 2016 Qazi et al, Biomaterials 2017

Stem cells – off the shelf?

Placenta expanded stromal cells (PLX) for supporting endogeneous regeneration - from preclinical studies to phase III multicenter clinical trials

Placenta

Cell Expansion2D

Intermediate cell stock

Cell **Expansion**

PLX products Off the shelf products

(>20,000 therapeutic units/placenta)

Stem cells – off the shelf?

Day 0	Day 0/7	Day 28	
Trauma	Transplantation of PLX	Force test and histologic analysis	

Stem cells – off the shelf?

Aim at complex pathogenesis in muscle injury/ischemia: myopathy, ischemia, myofiber necrosis, inflammation

pre THA

6 months post THA

Decorin MMP1, HGF **TGF**ß Galectin1

Muscle Regeneration

Immunomodulation: Inflammation

PLX-PAD was considered to be safe (n=20 patients)

Efficacy: placebo vs. intermediate dose vs. high dose

INCREASE IN GLUTEUS MEDIUS STRENGTH

— Placebo — 150M — **→** 300M

PLX induces immune modulation

• "Good" guys are kept (CD4+) if PLX present, but the high dose catches up...

PLX induces immune modulation

But why is 300M less good than 150M?

PLX induces immune modulation

• But why is 300M less good than 150M? Reduced postOP stress related immunological changes

EMA Phase III approval study: Multicentre clinical trial

Unmet medical need: Femoral neck fractures

- Intraoperative muscle trauma on top Fx & sarcopenia in elderly patients
- impaired mobilization + surgical stress in frail
- high mortality

EMA Phase III approval study: Multicentre clinical trial

EMA Phase III approval study: Multicentre clinical trial

- Total hip arthroplasty (THA)
 or Hemiarthroplasty (HA) via lateral approach
- IP administration IM during surgery in 10 injections (1.5mL each)
- **240** patients total (09/2018 1st patient in, 11/2019 50% patients enrolled)

2020

Lessons learned...

"refined translation"

Volk HD et al., Sci Transl Med 2015 DFG Positionspapier "Translation" Sept 2019

"prospective, mono-center, single-blinded, randomized, controlled study to assess the safety and efficacy of applying concentrated autologous CD31+ cells to promote bone healing in patients at risk with humeral head fracture"

Hypothesis

Intra-operative CD31+ cell concentration improves biologically impaired bone healing

^{*} Significant to control, p≤0.05, n≥5, bar = 1mm

Histology

Innate Immune Response - CD14+ LPS Stimulation

Adaptive Immune Response - CD8+ TCR Stimulation

Molecular profile of hematoma of treated rats

Sass et al., J Bone Miner Res. 2017 Loeffler et al Trends Endocrinol Metab. 2018 Loeffler, Sass et al., Front Immunol. 2019

BMBF Call "Early clinical trial" - OsteoHeal31

 PEI statement as minimally manipulating enrichment method Enrichment method in clincial study on CMV-specific T-cells (Neunhahn et.al, 2017)

EMA-classification of OsteoHeal31 as non-ATMP (2018)

Subject: Osteoheal31 (product ref.: H0004981) - Scientific recommendation on classification of ATMP according to Article 17 of Regulation (EC) No. 1394/2007

Further to the submission dated 04 January 2018 of an application to determine whether the medicine you are developing is an advanced therapy medicinal product, I am pleased to inform you that the Committee for Advanced Therapies (CAT), following consultation with the European Commission, has adopted at its plenary of 16 March 2018 a scientific recommendation of the classification of Osteoheal31, according to according to Article 17 of Regulation (EC) No. 1394/2007.

The EMA/CAT considers that product Osteoheal31, does not fall within the definition of an advanced therapy medicinal product as provided in Article 2 of Regulation (EC) No 1394/2007.

TACS-Technologie

Regulatory Requirements

Non-ATMP

- X gene therapy
- X tissue engineering
- X somatic cell therapy

No Investigational Medicinal Product

 √ Only administrating human blood cells

Blood product according to

transfusion law

Regulatory Documents:

- GMP-Manufacturing Allowance (LaGeSo)
- 2. Investigational Medicinal Product Dossiers (IMPD)
- 3. Information Brochure (IB)
- 4. Testing Schedule (research ethics committee)
- 5. Patient Information
- 6. Approval and Application for Clinical Study

Lessons learned...

- Sound idea & concept (including basic science)
- IP, identify a technology provider
- Seek advice early with PEI/EMA or authorized bodies
 - definition of technology
 - definition of approval path
 - remaining gaps, what is really needed
 - eventually, definition of patient cohorts

Campus Regenerative Therapies

BeCAT

Campus Regenerative Therapies

a Campus for People

for Research and Development of

R&D Network

BCRT - Exploration by Clinical Driven Basic Research

SI-M - Simulation employing Human Model Systems

BECAT – Application of Advanced Therapies

Institute Building South Future Charité-TU SI-M Building Future BECAT Building Facilitation of R&D

ECRT – Inspiration of New Ideas

BSRT – **Education** of the Next Generations

BCRT – Translation of Research into Diagnostics & Therapies

Acknowledgements

JWI & CMSC

- Katharina Schmidt-Bleek
- Annemarie Ploboth
- Ansgar Petersen
- Sven Geissler
- Simon Reinke
- Georg Bergmann
- Hendrik Schmidt
- Sara Checa
- Julia Löffler
- Claudia Schlundt
- Christian Bucher
- Sebastian Wendler
- Saeed Khomeijani Farahan
- Aline Lückgen
- Ulrich Stöckle
- Carsten Perka

Local

- Hans-Dieter Volk, Immunology & BCRT
- Petra Reinke, Nephrology & BCRT
- Andreas Radbruch, DRFZ
- Anja Hauser, DRFZ
- Raluca Niesner, DRFZ
- Peter Fratzl, MPI Colloids & Interfaces
- Richard Weinkammer, MPI Colloids
- Amaya Cipitria, MPI Colloids
- Stefan Mundlos, MPI Genetik & BCRT
- Uwe Kornak, MPI Genetik & BCRT
- Petra Knaus, FU Biochemistry
- Jessica Kopf, FU Biochemistry
- Andreas Lendlein, HZG Biomaterials
- Axel Neffe, HZG Biomaterials

National/International

- David Mooney, Harvard Wyss
- Viola Vogel, ETH
- Dave Grainger, U Utah
- Dietmar Hutmacher, QUT Brisbane
- Devakara Epari, QUT Brisbane
- Franz Jakob, Uni Würzburg
- Ralf Adams, MPI Münster
- Klaus-Dieter Schaser, Dresden
- Georg Matziolis, Jena
- William R Taylor, ETH Zurich
- Markus O. Heller, Southhampton
- Bettina Willie, McGill

Deutsche Forschungsgemeinschaft **DFG**

www.orthoload.org

